Skip to main content
Log in

Evolutionary Rates are Correlated Between Buchnera Endosymbionts and the Mitochondrial Genomes of Their Aphid Hosts

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The evolution of bacterial endosymbiont genomes is strongly influenced by host-driven selection. Factors affecting host genome evolution will potentially affect endosymbiont genomes in similar ways. One potential outcome is correlations in molecular rates between the genomes of the symbiotic partners. Recently, we presented the first evidence of such correlations between the mitochondrial genomes of cockroaches and the genomes of their endosymbiont (Blattabacterium cuenoti). Here we investigate whether similar patterns are found in additional host-symbiont partners. We use partial genome data from multiple strains of the bacterial endosymbionts Buchnera aphidicola and Sulcia muelleri, and the mitochondrial genomes of their sap-feeding insect hosts. Both endosymbionts show phylogenetic congruence with the mitochondria of their hosts, a result that is expected due to their identical mode of inheritance. We compared root-to-tip distances and branch lengths of phylogenetically independent species pairs. Both analyses showed a highly significant correlation of molecular rates between the genomes of Buchnera and the mitochondrial genomes of their hosts. A similar correlation was detected between Sulcia and their hosts, but was not statistically significant. Our results indicate that evolutionary rate correlations between hosts and long-term symbionts may be a widespread phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Datasets are uploaded as supplementary material.

References

  • Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:W7–W13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenhoff AM, Levy J, Zarowiecki M, Tomiczek B, Vesztrocy AW, Dalquen DA, Müller S, Telford MJ, Glover NM, Dylus D (2019) OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res 29:1152–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arab DA, Bourguignon T, Wang Z, Ho SY, Lo N (2020) Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes. Biol Lett 16:20190702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  PubMed  Google Scholar 

  • Baumann P, Baumann L, Lai C-Y, Rouhbakhsh D, Moran NA, Clark MA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94

    Article  CAS  PubMed  Google Scholar 

  • Bennett GM, Moran NA (2013) Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol 5:1675–1688

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319

    Article  PubMed  Google Scholar 

  • Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL (2003) Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol 1:e21

    Article  PubMed  PubMed Central  Google Scholar 

  • Bromham L (2009) Why do species vary in their rate of molecular evolution? Biol Lett 5:401–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224

    Article  CAS  PubMed  Google Scholar 

  • Chong RA, Moran NA (2018) Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J 12:898–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong RA, Park H, Moran NA (2018) Genome evolution of the obligate endosymbiont buchnera aphidicola. Mo Biol Evol 36:1481–1489

  • Clark MA, Moran NA, Baumann P, Wernegreen JJ (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54:517–525

    CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas A (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2010) The Symbiotic Habit. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Freckleton RP (2000) Phylogenetic tests of ecological and evolutionary hypotheses: checking for phylogenetic independence. Funct Ecol 14:129–134

    Article  Google Scholar 

  • Fukatsu T, Ishikawa H (1996) Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol 26:383–388

    Article  CAS  PubMed  Google Scholar 

  • Funk DJ, Wernegreen JJ, Moran NA (2001) Intraspecific variation in symbiont genomes: bottlenecks and the aphid-Buchnera association. Genetics 157:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrick RC, Sabree ZL, Jahnes BC, Oliver JC (2017) Strong spatial-genetic congruence between a wood-feeding cockroach and its bacterial endosymbiont, across a topographically complex landscape. J Biogeogr 44:1500–1511

    Article  Google Scholar 

  • Griffiths GW, Beck SD (1973) Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 19:75–84

    Article  Google Scholar 

  • Hansen AK, Moran NA (2011) Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA 108:2849–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington R, Bale J, Tatchell G (1995) Aphids in a changing climate. In: Harrington R, Stork N (eds) Insects in a changing environment. Academic Press, London, pp 125–155

    Google Scholar 

  • Hinde R (1971) The control of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. J Insect Physiol 17:1791–1800

    Article  Google Scholar 

  • Ho SYW, Lo N (2013) The insect molecular clock. Aust J Entomol 52:101–105

    Article  Google Scholar 

  • Ho SYW (2020) The molecular clock and evolutionary rates across the tree of life. In: Ho SYW (ed) The molecular clock. Springer, Cham

    Chapter  Google Scholar 

  • Hua J, Smith DR, Borza T, Lee RW (2012) Similar relative mutation rates in the three genetic compartments of Mesostigma and Chlamydomonas. Protist 163:105–115

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Balloux F, Dray S (2010) Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26:1907–1909

    Article  CAS  PubMed  Google Scholar 

  • Kassambara A (2018) ggpubr:“ggplot2” based publication ready plots. R package version 0.2.

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga R, Meng X-Y, Tsuchida T, Fukatsu T (2012) Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc Natl Acad Sci USA 109:E1230–E1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo N, Bandi C, Watanabe H, Nalepa C, Beninati T (2003) Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol Biol Evol 20:907–913

    Article  CAS  PubMed  Google Scholar 

  • Lourenço JM, Glémin S, Chiari Y, Galtier N (2013) The determinants of the molecular substitution process in turtles. J Evol Biol 26:38–50

    Article  PubMed  Google Scholar 

  • Mao M, Bennett GM (2020) Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J:1–12

  • Mao M, Yang X, Bennett GM (2018) Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc Natl Acad Sci USA 115:E11691–E11700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AP (1999) Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again). Mol Biol Evol 16:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng X-Y, McCutcheon JP, Fukatsu T (2018) Recurrent symbiont recruitment from fungal parasites in cicadas. PNAS 115:E5970–E5979

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2:708–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Bennett GM (2014) The tiniest tiny genomes. Annu Rev Microbiol 68:195–215

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc B 253:167–171

    Article  Google Scholar 

  • Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakabachi A, Shigenobu S, Sakazume N, Shiraki T, Hayashizaki Y, Carninci P, Ishikawa H, Kudo T, Fukatsu T (2005) Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc Natl Acad Sci USA 102:5477–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nováková E, Hypša V, Klein J, Foottit RG, von Dohlen CD, Moran NA (2013) Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol Phylogenet Evol 68:42–54

    Article  PubMed  Google Scholar 

  • Ortiz-Rivas B, Martínez-Torres D (2010) Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae. Mol Phylogenet Evol 55:305–317

    Article  PubMed  Google Scholar 

  • Paradis E, Schliep K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  Google Scholar 

  • Ren Z, Harris A, Dikow RB, Ma E, Zhong Y, Wen J (2017) Another look at the phylogenetic relationships and intercontinental biogeography of eastern Asian-North American Rhus gall aphids (Hemiptera: Aphididae: Eriosomatinae): evidence from mitogenome sequences via genome skimming. Mol Phylogenet Evol 117:102–110

    Article  PubMed  Google Scholar 

  • Sheldon FH, Jones CE, McCracken KG (2000) Relative patterns and rates of evolution in heron nuclear and mitochondrial DNA. Mol Biol Evol 17:437–450

    Article  CAS  PubMed  Google Scholar 

  • Silva FJ, Latorre A, Moya A (2001) Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet 17:615–618

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR (2012) Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol 4:294–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Lee RW (2010) Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvox carteri supports the mutational-hazard hypothesis. Mol Biol Evol 27:2244–2256

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban JM, Cryan JR (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol Biol 12:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch JJ, Waxman D (2008) Calculating independent contrasts for the comparative study of substitution rates. J Theor Biol 251:667–678

    Article  PubMed  Google Scholar 

  • Wilkinson T, Fukatsu T, Ishikawa H (2003) Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Struct Dev 32:241–245

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2017) DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. J Hered 108:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme A-M (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge, pp 615–630

    Chapter  Google Scholar 

  • Yan Z, Ye G, Werren JH (2019) Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins in insects. Mol Biol Evol 36:1022–1036

    Article  CAS  PubMed  Google Scholar 

  • Zerbino DR (2010) Using the velvet de novo assembler for short‐read sequencing technologies. Curr Protoc Bioinformatics 31:11.5.1–11.5.12

Download references

Acknowledgments

We thank Simon Ho for advice on data analysis, and for reviewing the manuscript

Funding

Daej A. Arab was supported by an International Postgraduate Research Stipend from the Australian Government. Nathan Lo was supported by a Future Fellowship from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Contributions

DAA and NL contributed to the study conception and design. Data collection, analysis, and figure preparation were performed by DAA. DAA wrote the manuscript. DAA and NL revised the final version of the manuscript.

Corresponding authors

Correspondence to Daej A. Arab or Nathan Lo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Informed Consent

All authors consent to publishing this manuscript.

Additional information

Handling Editor: Rafael Zardoya.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, D.A., Lo, N. Evolutionary Rates are Correlated Between Buchnera Endosymbionts and the Mitochondrial Genomes of Their Aphid Hosts. J Mol Evol 89, 238–248 (2021). https://doi.org/10.1007/s00239-021-10001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-021-10001-9

Keywords

Navigation