Skip to main content
Log in

Low-temperature oxidation behavior and mechanism of semi-dry desulfurization ash from iron ore sintering flue gas

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The low-temperature wet oxidation behavior of semi-dry desulfurization ash from iron ore sintering flue gas in ammonium citrate solution was investigated for efficiently utilizing the low-quality desulfurization ash. The effects of the ammonium citrate concentration, oxidation temperature, solid/liquid ratio, and oxidation time on the wet oxidation behavior of desulfurization ash were studied. Simultaneously, the oxidation mechanism of desulfurization ash was revealed by means of X-ray diffraction, Zeta electric resistance, and X-ray photoelectron spectroscopy (XPS) analysis. Under the optimal conditions with ammonium citrate, the oxidation ratio of CaSO3 was up to the maximum value (98.49%), while that of CaSO3 was only 8.92% without ammonium citrate. Zeta electric resistance and XPS results indicate that the dissolution process of CaSO3 could be significantly promoted by complexation derived from the ammonium citrate hydrolysis. As a result, the oxidation process of CaSO3 was transformed from particle oxidation to SO 2−3 ion oxidation, realizing the rapid transformation of desulfurization ash from CaSO3 to CaSO4 at low temperature. It provides a reference for the application of semi-dry desulfurization ash and contributes to sustainable management for semi-dry desulfurization ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.W. Yu, L.X. Qian, H.M. Long, Y.F. Wang, Q.M. Meng, T.J. Chun, J. Iron Steel Res. Int. 26 (2019) 1257–1264.

    Article  Google Scholar 

  2. H.M. Long, X.J. Wu, T.J. Chun, Z.X. Di, P. Wang, Q.M. Meng, Int. J. Miner. Metall. Mater. 23 (2016) 1239–1243.

    Article  Google Scholar 

  3. X.H. Fan, Z.Y. Yu, M. Gan, W.Q. Li, Z.Y. Ji, J. Iron Steel Res. Int. 42 (2015) 27–33.

    Article  Google Scholar 

  4. L.X. Qian, Y.D. Zhang, H.M. Long, Q.M. Meng, N. Li, Ironmak. Steelmak. 47 (2020) 973–979.

    Article  Google Scholar 

  5. L.X. Qian, L. Ding, H.M. Long, X.X. Zhang, Z.W. Yu, J. Iron Steel Res. 32 (2020) 542–549.

    Google Scholar 

  6. P. Córdoba, Fuel 144 (2015) 274–286.

    Article  Google Scholar 

  7. Y.D. Pei, S.L. Wu, S.G. Chen, Z.X. Zhao, G. An, Z.M. Cheng, Y.S. Luo, J. Iron Steel Res. Int. 24 (2017) 697–704.

    Article  Google Scholar 

  8. H.M. Long, Y.F. Wang, N.N. Lv, R.F. Wei, T.J. Chun, J. Eng. Stud. 9 (2017) 78–84.

    Article  Google Scholar 

  9. J.M. Bigham, D.A. Kost, R.C. Stehouwer, J.H. Beeghly, R. Fowler, S.J. Traina, W.E. Wolfe, W.A. Dick, Fuel 84 (2005) 1839–1848.

    Article  Google Scholar 

  10. B. Guo, J.F. Bian, A.L. Ren, R.P. Liu, Z. Zhang, J. Cent. South Univ. (Sci. Technol.) 41 (2010) 387–392.

  11. J.K. Solem-Tishmack, G.J. McCarthy, B. Docktor, K.E. Eylands, J.S. Thompson, D.J. Hassett, Cem. Concr. Res. 25 (1995) 658–670.

    Article  Google Scholar 

  12. J. Iribarne, A. Iribarne, J. Blondin, E.J. Anthony, Fuel 80 (2001) 773–784.

    Article  Google Scholar 

  13. H. Motzet, H. Pöllmann, Cem. Concr. Res. 29 (1999) 1005–1011.

    Article  Google Scholar 

  14. Q.F. Su, Y.M. Zhou, Y.R. Chen, M.Z. Wu, J. Chin. Ceram. Soc. 44 (2016) 663–667.

    Google Scholar 

  15. D.Y. Lei, L.P. Guo, W. Sun, J.P. Liu, C.W. Miao, Constr. Build. Mater. 153 (2017) 765–773.

    Article  Google Scholar 

  16. X.D. Wen, D.D. Xie, Y. Yi, Z.J. Xu, Adv. Mater. Res. 250–253 (2011) 1054–1057.

    Article  Google Scholar 

  17. B. Guo, J.F. Bian, A.L. Ren, Environmental Pollution and Control 31 (2009) No. 7, 1–4.

    Google Scholar 

  18. L.D. Wang, J. Wang, P.Y. Xu, Q.W. Li, W.D. Zhang, S. Cui, Appl. Catal. A Gen. 508 (2015) 52–60.

    Article  Google Scholar 

  19. Y. Dong, X. Ren, S. Zhang, W. Lv, Z.F. Lu, Environmental Engineering 30 (2012) No. 6, 95–97.

    Google Scholar 

  20. G. Lente, I. Fábián, J. Chem. Soc. Dalton Trans. (2002) No. 5, 778–784.

  21. J. Block, Method and composition for removing calcium sulfate scale deposits from surfaces, US, 4144185, 1979.

  22. R.F. Wei, L.Z. Chen, H.M. Long, Y.F. Wang, J.X. Li, Y.F. Li, M. Xuan, Chin. J. Process Eng. 19 (2019) 603–608.

    Google Scholar 

  23. A.N. Ermakov, A.P. Purmal, Kinet. Catal. 43 (2002) 249–260.

    Article  Google Scholar 

  24. C. Gervais, C.A. Grissom, N. Little, M.J. Wachowiak, Stud. Conserv. 55 (2010) 164–176.

    Article  Google Scholar 

  25. H.Y. Chen, J. Wang, S.C. Hou, L. Xiang, J. Nanomater. 2015 (2015) 670872.

    Google Scholar 

  26. P. Tian, P.G. Ning, H.B. Cao, Z.B. Li, Chin. J. Process Eng. 12 (2012) 625–630.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51704004 and 51674002) and the Natural Science Foundation of Anhui Province (Grant No. 1808085QE133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-ming Long or Ru-fei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yf., Zhang, Yd., Long, Hm. et al. Low-temperature oxidation behavior and mechanism of semi-dry desulfurization ash from iron ore sintering flue gas. J. Iron Steel Res. Int. 28, 1075–1081 (2021). https://doi.org/10.1007/s42243-021-00582-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00582-6

Keywords

Navigation