Skip to main content
Log in

Inspirations from the scientific discovery of the anammox bacteria: A classic example of how scientific principles can guide discovery and development

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Anaerobic ammonium oxidation (anammox) is a relatively new pathway within the N cycle discovered in the late 1990s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma “all living things depend on the sun for growth,” the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH4 + by using NO2 - as the terminal electron acceptor to produce N2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea (AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshikawa H, Hira D, Kindaichi T, Satoh H, Fujii T, Okabe S. 2015. Physiological characterization of anaerobic ammonium oxidizing bacterium “Candidatus Jettenia caeni”. Environ Microbiol, 17: 2172–2189

    Article  Google Scholar 

  • Amann R I, Ludwig W, Schleifer K H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 59: 143–169

    Google Scholar 

  • Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437: 349–355

    Article  Google Scholar 

  • Boumann H A, Longo M L, Stroeve P, Poolman B, Hopmans E C, Stuart M C, Sinninghe D J S, Schouten S. 2009. Biophysical properties of membrane lipids of anammox bacteria: I. Ladderane phospholipids form highly organized fluid membranes. Biochim Biophys Acta, 1788: 1444–1451

    Article  Google Scholar 

  • Broda E. 1977. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol, 17: 491–493

    Article  Google Scholar 

  • Byrne N, Strous M, Crépeau V, Kartal B, Birrien J L, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten M, Prieur D, Godfroy A. 2009. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. J ISME, 3: 117–123

    Article  Google Scholar 

  • Chen Z J, Wang J F, Zhang H Q, Shen Y L. 2014. Review: Wastewater treatment process with anaerobic ammonia oxidation and its practical application (in Chinese). Ecol Environ Sci, 23: 521–527

    Google Scholar 

  • Dalsgaard T, Canfield D, Petersen J, Thamdrup B, Acuna-González J. 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, 422: 606–608

    Article  Google Scholar 

  • Dang H Y, Chen R P, Wang L, Guo L Z, Chen P P, Tang Z W, Tian F, Li S Z, Klotz M G. 2010. Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol, 76: 7036–7047

    Article  Google Scholar 

  • Dang H Y, Zhou H X, Zhang Z N, Yu Z S, Hua E, Liu X S, Jiao N Z. 2013. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS ONE, 8: e61330

    Article  Google Scholar 

  • Devol A H. 2003. Solution to a marine mystery. Nature, 422: 575–576

    Article  Google Scholar 

  • Fuchsman C A, Staley J T, Oakley B B, Kirkpatrick J B, Murray J W. 2012. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol Ecol, 80: 402–416

    Article  Google Scholar 

  • Graaf A A, Bruijn P, Robertson L A, Jetten M S M, Kuenen J G. 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology, 143: 2415–2421

    Article  Google Scholar 

  • Graaf A A, Mulder A, Bruijn P, Jetten M S, Robertson L A, Kuenen J G. 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol, 61: 1246–1251

    Google Scholar 

  • Hu B L, Zheng P, Tang C J, Chen J W, Biezen E, Zhang L, Ni B J, Jetten M S, Yan J, Yu H Q, Kartal B. 2010. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res, 44: 5014–5020

    Article  Google Scholar 

  • Hu Z, Alen T, Jetten M S, Kartal B. 2013. Lysozyme and penicillin inhibit the growth of anaerobic ammonium-oxidizing planctomycetes. Appl Environ Microbiol, 79: 7763–7769

    Article  Google Scholar 

  • Jaeschke A, Op den Camp H J, Harhangi H, Klimiuk A, Hopmans E C, Jetten M S, Schouten S, Sinninghe D J S. 2009. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiol Ecol, 67: 343–350

    Article  Google Scholar 

  • Jetten M S, Niftrik L V, Strous M, Kartal B, Keltjens J T, Op den Camp H J. 2009. Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol, 44: 65–84

    Article  Google Scholar 

  • Jetten M S, Wagner M, Fuerst J, Loosdrecht M, Kuenen G, Strous M. 2001. Microbiology and application of the anaerobic ammonium oxidation (“anammox”) process. Curr Opin Biotechnol, 12: 283–288

    Article  Google Scholar 

  • Jogler C. 2014. The bacterial “mitochondrium”. Mol Microbiol, 10: 12814

    Google Scholar 

  • Kartal B, Almeida N M, Maalcke W J, Op den Camp HJ, Jetten M S, Keltjens J T. 2013. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev, 37: 428–461

    Article  Google Scholar 

  • Kartal B, Kuenen J G, Loosdrecht M C. 2010. Sewage treatment with anammox. Science, 328: 702–703

    Article  Google Scholar 

  • Kartal B, Maalcke W J, Almeida N M, Cirpus I, Gloerich J, Geerts W, Op den Camp H J, Harhangi H R, Janssen-Megens E M, Francoijs K J, Stunnenberg H G, Keltjens J T, Jetten M S, Strous M. 2011. Molecular mechanism of anaerobic ammonium oxidation. Nature, 479: 127–130

    Article  Google Scholar 

  • Kartal B, Niftrik L, Rattray J, Vossenberg J L, Schmid M C, Sinninghe D J, Jetten M S, Strous M. 2008. Candidatus “Brocadia fulgida”: An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol, 63: 46–55

    Article  Google Scholar 

  • Kartal B, Rattray J, Niftrik L A, Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Sinninghe D J, Jetten M S, Strous M. 2007. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 30: 39–49

    Article  Google Scholar 

  • Kuenen J G. 2008. Anammox bacteria: From discovery to application. Nat Rev Microbiol, 6: 320–326

    Article  Google Scholar 

  • Kuenen J G, Jetten M S. 2001. Extraordinary anaerobic ammonium oxidising bacteria. ASM News, 64: 456–463

    Google Scholar 

  • Kuypers M M, Sliekers A O, Lavik G, Schmid M, Jøgensen B B, Kuenen J G, Sinninghe D J S, Strous M, Jetten M S M. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422: 608–611

    Article  Google Scholar 

  • Mulder A. 1992. Anoxic ammonia oxidation. US Patent US5078884 A

    Google Scholar 

  • Mulder A, Graaf A A, Robertson L A, Kuenen J G. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol, 16: 177–183

    Article  Google Scholar 

  • Neumann S, Jetten M S, Niftrik L. 2011. The ultrastructure of the compartmentalized anaerobic ammonium-oxidizing bacteria is linked to their energy metabolism. Biochem Soc Trans, 39: 1805–1810

    Article  Google Scholar 

  • Niftrik L, Jetten M S. 2012. Anaerobic ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties. Microbiol Mol Biol Re, 76: 585–596

    Article  Google Scholar 

  • Quan Z X, Rhee S K, Zuo J E, Yang Y, Bae J W, Park J R, Lee S T, Park Y H. 2008. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol, 10: 3130–3139

    Article  Google Scholar 

  • Richard F A. 1965. Anoxic basins and fjords. In: Ripley J P, Skirrow G, eds. Chemical Oceanography. Manhattan: Academic Press. 1: 611–645

    Google Scholar 

  • Rothrock M J J, Vanotti M B, Szögi A A, Gonzalez M C, Fujii T. 2011. Long-term preservation of anammox bacteria. Appl Microbiol Biotechnol, 92: 147–157

    Article  Google Scholar 

  • Russ L, Kartal B, Op den Camp H J, Sollai M, Le Bruchec J, Caprais J C, Godfroy A, Sinninghe D J S, Jetten M S. 2013. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Front Microbiol, 4: 219

    Article  Google Scholar 

  • Schalk J, Oustad H, Kuenen J G, Jetten M S. 1998. The anaerobic oxidation of hydrazine: A novel reaction in microbial nitrogen metabolism. FEMS Microbiol Lett, 158: 61–67

    Article  Google Scholar 

  • Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger J W, Schleifer K H, Wagner M. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol, 23: 93–106

    Article  Google Scholar 

  • Schmid M, Walsh K, Webb R, Rijpstra W I, Pas-Schoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Sinninghe D J S, Harris J, Shaw P, Jetten M, Strous M. 2003. Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 26: 529–38

    Article  Google Scholar 

  • Shao S D, Luan X W, Dang H Y, Zhou H X, Zhao Y K, Liu H T, Zhang Y B, Dai L Q, Ye Y, Klotz M G. 2014. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria. FEMS Microbiol Ecol, 87: 503–516

    Article  Google Scholar 

  • Sinninghe D J, Rijpstra W I, Geenevasen J A, Strous M, Jetten M S. 2005. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J, 272: 4270–4283

    Article  Google Scholar 

  • Sinninghe D J, Strous M, Rijpstra W I, Hopmans E C, Geenevasen J A, Duin A C, Niftrik LA, Jetten M S. 2002. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 419: 708–712

    Article  Google Scholar 

  • Sonthiphand P, Hall M W, Neufeld J D. 2014. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol, 5: 399

    Article  Google Scholar 

  • Stahl D A, Torre J R. 2012. Physiology and diversity of ammoniaoxidizing archaea. Annu Rev Microbiol, 66: 83–101

    Article  Google Scholar 

  • Strous M, Fuerst J A, Kramer E H, Logemann S, Muyzer G, Pas-Schoonen K T, Webb R, Kuenen J G, Jetten M S. 1999. Missing lithotroph identified as new planctomycete. Nature, 400: 446–449

    Article  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh B E, Op den Camp H J, van der Drift C, Cirpus I, van de Pas-Schoonen K T, Harhangi H R, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes H W, Weissenbach J, Jetten M S, Wagner M, Le Paslier D. 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440: 790–794

    Article  Google Scholar 

  • Teeseling M C, Neumann S, Niftrik L. 2013. The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria. J Mol Microbiol Biotechnol, 23: 104–117

    Article  Google Scholar 

  • Thamdrup B, Dalsgaard T. 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol, 68: 1312–1318

    Article  Google Scholar 

  • Venter J C, Remington K, Heidelberg J F, Halpern A L, Rusc D, Eisen J A, Wu D Y, Paulsen I, Nelson K E, Nelson W, Fouts D E, Levy S, Knap A H, Lomas M W, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y H, Smith H O A F. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304: 66–74

    Article  Google Scholar 

  • Vossenberg J, Woebken D, Maalcke W J, Wessels H J, Dutilh B E, Kartal B, Janssen-Megens E M, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs K J, Russ L, Lam P, Malfatti S A, Tringe S G, Haaijer S C, Op den Camp H J, Stunnenberg H G, Amann R, Kuypers M M, Jetten M S. 2013. The metagenome of the marine anammox bacterium “Candidatus Scalindua profunda” illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol, 15: 1275–1289

    Article  Google Scholar 

  • Woebken D, Lam P, Kuypers M M, Naqvi S W, Kartal B, Strous M, Jetten M S, Fuchs B M, Amann R. 2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol, 10: 3106–3119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongYue Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H., Huang, R. & Jiao, N. Inspirations from the scientific discovery of the anammox bacteria: A classic example of how scientific principles can guide discovery and development. Sci. China Earth Sci. 59, 449–455 (2016). https://doi.org/10.1007/s11430-015-5203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5203-6

Keywords

Navigation