Skip to main content

Advertisement

Log in

Quantum Computing and Deep Learning Methods for GDP Growth Forecasting

  • Published:
Computational Economics Aims and scope Submit manuscript

This article has been updated

Abstract

Precise macroeconomic forecasting is one of the major aims of economic analysis because it facilitates a timely assessment of future economic conditions and can be used for monetary, fiscal, and economic policy purposes. Numerous works have studied the behavior of the macroeconomic situation and have developed models to forecast them. However, the existing models have limitations, and the literature demands more research on the subject given that the accuracy of the models is still poor, and they have only been expanded for developed countries. This paper presents a comparison of methodologies for GDP growth forecasting and, consequently, new forecasting models of GDP growth have been constructed with the ability to estimate accurately future scenarios globally. A sample of 70 countries was used, which has allowed the use of sample combinations that consider the regional heterogeneity of the warning indicators. To the sample under study, different methods have been applied to achieve a high accuracy model, comparing Quantum Computing with Deep Learning procedures, being Deep Neural Decision Trees, which has provided excellent prediction results thanks to large-scale processing with mini-batch-based learning and can be connected to any larger Neural Networks model. Our model has a great potential impact on the adequacy of macroeconomic policy, providing tools that help to achieve macroeconomic and monetary stability at the global level, and creating new methodological opportunities for GDP growth forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 25 March 2021

    on page 1, the corresponding author's affiliation “Mangement” included for blind review was replaced with “Management”

References

  • Adachi, S. H., & Henderson, M. P. (2015). Application of quantum annealing to training of deep neural networks. ArXiv eprints, 1510.06356.

  • Alaminos, D., Fernández, S. M., García, F., & Fernández, M. A. (2018). Data mining for municipal financial distress prediction, Advances in Data Mining, Applications and Theoretical Aspects. Lecture Notes in Computer Science, 10933, 296–308. https://doi.org/10.1007/978-3-319-95786-9_23.

  • Barsoum, F., & Stankiewicz, S. (2015). Forecasting GDP growth using mixed-frequency models with switching regimes. International Journal of Forecasting, 31, 33–50. https://doi.org/10.1016/j.ijforecast.2014.04.002.

    Article  Google Scholar 

  • Batchelor, R., & Dua, P. (1992). Survey expectations in the time series consumption function. The Review of Economics and Statistics, 74, 598–606.

    Article  Google Scholar 

  • Batchelor, R., & Dua, P. (1998). Improving macro-economic forecasts: The role of consumer confidence. International Journal of Forecasting, 14, 71–81.

    Article  Google Scholar 

  • Benedetti, M., Realpe-Gómez, J., Biswas, R., & Perdomo-Ortiz, A. (2017). Quantum-assisted learning of hardware-embedded probabilistic graphical models. Physical Review. X 7. https://doi.org/10.1103/PhysRevX.7.041052.

  • Benedetti, M., Realpe-Gómez, J., Biswas, R., & Perdomo-Ortiz, A. (2016). Estimation of effective temperaturas in quantum annealers for sampling applications: A case study with possible applications in deep learning. Physical Review. A 92. https://doi.org/10.1103/PhysRevA.4,022308.

  • Bengio, Y. (2009). Learning deep architectures for artificial intelligence. Foundations and Trends in Machine Learning, 2 (1): 1-127.

  • Bergström, R. (1995). The relationship between manufacturing production and different business survey series in Sweden 1968–1992. International Journal of Forecasting, 11, 379–393. SSDI: 0169–2070(95)00601-X.

    Article  Google Scholar 

  • Carriero, A., Clark, T. E., & Marcellino, M. (2019). Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors. Journal of Econometrics, 212, 137–154. https://doi.org/10.1016/j.jeconom.2019.04.024.

    Article  Google Scholar 

  • Carriero, A., Galvão, A. B., & Kapetanios, G. (2019). A comprehensive evaluation of macroeconomic forecasting methods. International Journal of Forecasting, 35, 1226–1239. https://doi.org/10.1016/j.ijforecast.2019.02.007.

    Article  Google Scholar 

  • Camba-Mendez, G., Kapetanios, G., Smith, R. J., & Weale, M. R. (2001). An automatic leading indicator of economic activity: Forecasting GDP growth for European countries. Econometrics Journal, 4, S56–S90.

    Article  Google Scholar 

  • Claveria, O., Monte, E., & Torra, S. (2019). Evolutionary computation for macroeconomic forecasting. Computational Economics, 53(21), 833–849. https://doi.org/10.1007/s10614-017-9767-4.

    Article  Google Scholar 

  • Clark, T.,E. (2011). Real-time density forecasts from bayesian vector autoregressions with stochastic volatility. Journal of Business & Economic Statistics, 29(3), 327–341. https://doi.org/10.1198/jbes.2010.09248.

    Article  Google Scholar 

  • Clark, T. E., & Ravazzolo, F. (2015). Macroeconomic forecasting performance under alternative specifications of time-varying volatility. Journal of Applied Econometrics, 30, 551–575. https://doi.org/10.1002/jae.2379.

    Article  Google Scholar 

  • Clements, M. P., & Galvão, A. B. (2008). Macroeconomic forecasting with mixed-frequency data. Journal of Business & Economic Statistics, 26(4), 546–554. https://doi.org/10.1198/073500108000000015.

    Article  Google Scholar 

  • Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40, 3970–3983. https://doi.org/10.1016/j.eswa.2013.01.012.

    Article  Google Scholar 

  • Diebold, F. X., Schorfheide, F., & Shin, M. (2017). Real-time forecast evaluation of DSGE models with stochastic volatility. Journal of Econometrics, 201, 322–332. https://doi.org/10.1016/j.jeconom.2017.08.011.

    Article  Google Scholar 

  • Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995.

  • Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., & Preda, D. (2001). A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292(5516), 472–475. https://doi.org/10.1126/science.1057726.

    Article  Google Scholar 

  • Ferrara, L., Marcellino, M., & Mogliani, M. (2015). Macroeconomic Forecasting during the Great Recessions: The return of non-linearity? International Journal of Forecasting, 31, 664–679. https://doi.org/10.1016/j.ijforecast.2014.11.005.

    Article  Google Scholar 

  • Ghoddusi, H., Creamer, G. G., & Rafizadeh, N. (2019). Machine learning in energy economics and finance: A review. Energy Economics, 81(C), 709–727. https://doi.org/10.1016/j.eneco.2019.05.006.

    Article  Google Scholar 

  • Gonçalves, C. P. S. (2019). Quantum neural machine learning: Theory and experiments, Chap. 5, Artificial intelligence-applications in medicine and biology. IntechOpen, London (2019). https://doi.org/10.5772/intechopen.84149.

  • Hansson, J., Jansson, P., & Löf, M. (2005). Business survey data: Do they help in forecasting GDP growth? International Journal of Forecasting, 21, 377–389. https://doi.org/10.1016/j.ijforecast.2004.11.003.

    Article  Google Scholar 

  • Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124, 226–251. https://doi.org/10.1016/j.eswa.2019.01.012.

    Article  Google Scholar 

  • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 832–844.

    Article  Google Scholar 

  • Huang, C. W., & Narayanan, S. S. (2017). Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In IEEE International conference on multimedia and expo (ICME).

  • Kapetanios, G., Marcellino, M., & Papailias, F. (2016). Forecasting inflation and GDP growth using heurtisic optimisation of information criteria and variable reduction methods. Computational Statistics & Data Analysis, 100, 369–382. https://doi.org/10.1016/j.csda.2015.02.017.

    Article  Google Scholar 

  • Koop, G. M. (2013). Forecasting with medium and large bayesian VARs. Journal of Applied Econometrics, 28, 177–203. https://doi.org/10.1002/jae.1270.

    Article  Google Scholar 

  • Koprinska, I., Rana, M., & Rahman, A. (2019). Dynamic ensemble using previous and predicted future performance for Multi-step-ahead solar power forecasting. ICANN 2019: Artificial Neural Networks and Machine Learning, 11730, 436–449. https://doi.org/10.1007/978-3-030-30490-4_35.

    Article  Google Scholar 

  • Kuzin, V., Marcellino, M., & Schumacher (2013). Pooling versus model selection for nowcasting GDP with many predictors: empirical evidence for six industrialized countries. Journal of Applied Econometrics, 28, 392–411. DOI:https://doi.org/10.1002/jae.2279.

    Article  Google Scholar 

  • Li, M. W., Geng, J., Wang, S., & Hong, W. C. (2017). Hybrid chaotic quantum bat algorithm with SVR in electric load forecasting. Energies, 10, 2180.

  • Ma, M., & Mao, Z. (2019). Deep recurrent convolutional neural network for remaining useful life prediction. In IEEE international conference on prognostics and health management (ICPHM).

  • Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLoS ONE, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889.

    Article  Google Scholar 

  • Mahajan, R. P. (2011). A quantum neural network approach for portfolio selection. International Journal of Computer Applications, 29(4), 47–54.

    Article  Google Scholar 

  • Marcellino, M. (2008). A linear benchmark for forecasting GDP growth and inflation. Journal of Forecasting, 27, 305–340 (2008). https://doi.org/10.1002/for.1059.

  • Marcellino, M., Porqueddu, M., & Venditti, F. (2016). Short-term GDP forecasting with a mixed-frequency dynamic factor model with stochastic volatility. Journal of Business & Economic Statistics, 34(1), 118–127. DOI:https://doi.org/10.1080/07350015.2015.1006773.

    Article  Google Scholar 

  • Martinsen, K., Ravazzolo, F., & Wulsberg, F. (2014). Forecasting macroeconomic variables using disaggregate survey data. International Journal of Forecasting, 30, 65–77. https://doi.org/10.1016/j.ijforecast.2013.02.003.

    Article  Google Scholar 

  • Moews, B., Herrmann, J. M., & Ibikunle, G. (2019). Lagged correlation-based deep learning for directional trend change prediction in financial time series. Expert Systems with Applications, 120, 197–206. https://doi.org/10.1016/j.eswa.2018.11.027.

    Article  Google Scholar 

  • Montano, I. H., Marques, G., Alonso, S. G., et al. (2020). Predicting absenteeism and temporary disability using machine learning: A systematic review and analysis. Journal of Medical Systems, 44, 162. https://doi.org/10.1007/s10916-020-01626-2.

    Article  Google Scholar 

  • Moss, C. F., & Sinha, S. R. (2003). Neurobiology of echolocation in bats. Current Opinion in Neurobiology, 13, 751–758. https://doi.org/10.1016/j.conb.2003.12.001.

    Article  Google Scholar 

  • Norouzi, M., Collins, M. D., Johnson, M., Fleet, D. J., & Kohli, P. (2015). Efficient non-greedy optimization of decision trees. In Advances in Neural Information Processing Systems 28 (NIPS 2015). The MIT Press, Cambridge, MA, USA.

  • Pesantez-Narvaez, J., Guillen, M., & Alcañiz, M. A. (2020). A synthetic penalized logitboost to model mortgage lending with imbalanced data. Computational Economics, published online. https://doi.org/10.1007/s10614-020-10059-5.

  • Quinlan, J. R. (1993). C4,5: Programs for Machine Learning, Morgan Kaufmann PublishersInc,: Burlington, MA, USA, 1993.

  • Reyes, C., Hilaire, T., Paul, S., & Mecklenbräuker, C. F. (2010). Evaluation of the root mean square error performance of the PAST-Consensus algorithm. IEEE , 2010 International ITG Workshop on Smart Antennas (WSA), Bremen (pp. 156–160). https://doi.org/10.1109/WSA.2010.5456452.

  • Salas, M. B., Alaminos, D., Fernández, M. A., & López-Valverde, F. (2020). A global prediction model for sudden stops of capital flows using decision trees. PLOS ONE, 15(2), e0228387. https://doi.org/10.1371/journal.pone.0228387.

    Article  Google Scholar 

  • Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145, 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1.

    Article  Google Scholar 

  • Sanhudo, L., Calvetti, D., Martins, J. P., Ramos, N. M. M., Mêda, P., Gonçalves, M. P., & Sousa, H. (2020). Activity classification using accelerometers and machine learning for complex construction worker activities. Journal of Building Engineering, In Press, Corrected Proof. https://doi.org/10.1016/j.jobe.2020.102001.

  • Schorfheide, F., & Song, D. (2015). Real-time forecasting with a mixed-frequency VAR. Journal of Business and Economic Statistics, 33(3), 366–380. https://doi.org/10.1080/07350015.2014.954707.

    Article  Google Scholar 

  • Seng, K. P., Ang, L., Schmidtke, L. M., & Rogiers, S. Y. (2018). Computer vision and machine learning for viticulture technology. IEEE Access: Practical Innovations, Open Solutions, 6, 67494–67510. https://doi.org/10.1109/ACCESS.2018.2875862.

    Article  Google Scholar 

  • Smets, F., Warne, A., & Wouters, R. (2014). Professional forecasters and real-time forecasting with a DSGE model. International Journal of Forecasting, 30, 0981–995. https://doi.org/10.1016/j.ijforecast.2014.03.018.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics, 20(2), 147–162. https://doi.org/10.1198/073500102317351921.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2003). Forecasting output and inflation: The role of asset prices. Journal of Economic Literature. Vol, CLI, 788–829.

    Article  Google Scholar 

  • Wan, K. H., Dahlsten, O., Kristjánsson, H., Gardner, R., & Kim, M. S. (2017). Quantum generalisation of feedforward neural networks. NPJ Quantum Information, 3 (36). https://doi.org/10.1038/s41534-017-0032-4.

  • Wu, Z., Zhang, W., Zhao, J., Chen, C., & Ji, P. (2019). Optimized complex network method (OCNM) for improving accuracy of measuring human attention in single-electrode neurofeedback system. Computational Intelligence and Neuroscience, 2167871, 1–10. https://doi.org/10.1155/2019/2167871.

    Article  Google Scholar 

  • Yang, Y., Garcia-Morillo, I., & Hospedales, T. M. (2018). Deep neural decision trees. In ICML workshop on human interpretability in machine learning (WHI 2018), Stockholm, Sweden.

  • Zidan, M., Abdel-Aty, A.-H., El-shafei, M., Feraig, M., Al-Sbou, Y., Eleuch, H., & Abdel-Aty, M. (2019). Quantum classification algorithm based on competitive learning neural network and entanglement measure. Applied Sciences, 9, 1277. https://doi.org/10.3390/app9071277.

    Article  Google Scholar 

  • Zhang, J., Li, L., & Chen, W. (2020). Predicting stock price using two–stage machine learning techniques. Computational Economics. https://doi.org/10.1007/s10614-020-10013-5.

  • Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160, 501–514. https://doi.org/10.1016/j.ejor.2003.08.037.

    Article  Google Scholar 

  • Zhao, Y., Li, J., & Yu, L. (2017). A deep learning ensemble approach for crude oil price forecasting. Energy Economics, 66(C), 9–16. https://doi.org/10.1016/j.eneco.2017.05.023.

    Article  Google Scholar 

  • Zhong, X., & Enke, D. (2019). Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financial Innovation, 5, 24. https://doi.org/10.1186/s40854-019-0138-0.

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alaminos.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6 and 7.

Table 5 Sample of emerging countries
Table 6 Sample of emerging countries
Table 7 Global sample

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaminos, D., Salas, M.B. & Fernández-Gámez, M.A. Quantum Computing and Deep Learning Methods for GDP Growth Forecasting. Comput Econ 59, 803–829 (2022). https://doi.org/10.1007/s10614-021-10110-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10110-z

Keywords

Navigation