Skip to main content
Log in

Thin Indicator Films to Assess the Residual Strength of a GFRP after a Local Contact Action

  • Published:
Mechanics of Composite Materials Aims and scope

Two types of thin impact indicator films were developed: made of an epoxy composite with hollow glass microspheres and of a selfadhesive thermoplastic with retroreflective microprisms. They are highly sensitive to local impacts and change the intensity of light reflection in damage zones. Experimental investigations into the residual strength of a GFRP plate covered with indicator films and resting on a rigid basis after its striking by a steel indenter were performed. Numerical models to predict the imprint diameter on the films and the residual strength of a GFRP plate with defect zones after the impact are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. S. V. Dubinskii, Yu. M. Feigenbaum, A. A. Selikhov, S. A. Gvozdev, and V. M. Ordyntsev, “Mechanisms of realization of impact actions on the wing structure of commercial planes,” Izv. Samar. Nauch. Tsentra RAN, 18/4 (3), the 604-611 (2016).

  2. R. C. Batra, G. Gopinath, and J. Q. Zheng, “Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates,” Compos. Struct., 94, No. 2, 540-547 (2012).

    Article  Google Scholar 

  3. S. A. Smotrova, and A. V. Smotrov, “Features of damageability of aviation structures made from PCM,” Results of Basic Research in Applied Problems of Aircraft Industry, M., Nauka, 418-429 (2016).

  4. S. I. Thorsson, S. P. Sringeri, A. M. Waas, B. P. Justusson, and M. Rassaian, “Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact,” Compos. Struct., 186, 335-346 (2018).

    Article  Google Scholar 

  5. M. Damghani, N. Ersoy, M. Piorkowski, and A. Murphy, “Experimental evaluation of residual tensile strength of hybrid composite aerospace materials after low-velocity impact,” Composites: Part B, 107537 (2019).

    Google Scholar 

  6. A. M. Amaro, P. N. B. Reis, and M. F. S. F. de Moura, “Delamination effect on bending behaviour in carbon-epoxy composites,” Strain., 47, No. 2, 203-208 (2011).

    Article  CAS  Google Scholar 

  7. W. Li, C. C. Matthews, K. Yang, M. T. Odarczenko, S. R. White, and N. R. Sottos, “Autonomous indication of mechanical damage in polymeric coatings,” J. Adv. Mater., 28, No. 11, 2189-2194 (2016).

    Article  CAS  Google Scholar 

  8. S. Vidinejevs, O. Strekalova, A. Aniskevich, and S. Gaidukov, “Development of a composite with an inherent function of visualization of a mechanical action,” Mech. Compos. Mater., 49, No. 1, 77-84 (2013).

    Article  CAS  Google Scholar 

  9. S. Kling and T. Czigány, “Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling,” Compos. Sci. Technol., 99, 82-88 (2014).

    Article  CAS  Google Scholar 

  10. S. Shree, M. Schulz-Senft, A. Kuntze, Y. K. Mishra, A. Staubitz, and R. Adelung, “Self-reporting mechanochromic coating: glassfiber reinforced polymer composites that predict impact induced damage,” Eng. Solid Mech., 8, No. 3, 285-300 (2019).

    Google Scholar 

  11. S. Lörcher, T. Winkler, K. Makyła, C. Ouellet-Plamondon, I. Burgert, and N. Bruns, “Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fiber-reinforced composites,” J. Mater. Chem. A, 2, No. 17, 6231-6237 (2014).

    Article  Google Scholar 

  12. R. Toivola, P.-N. Lai, J. Yang, S.-H. Jang, A. K.-Y. Jen, and B. D. Flinn, “Mechanochromic fluorescence in epoxy as a detection method for barely visible impact damage in CFRP composites,” Compos. Sci. Technol., 139, 74-82 (2017).

    Article  CAS  Google Scholar 

  13. S. L. Tchernyshev, M. C. Zinchenkov, S. A. Smotrova, V. M. Novotortsev, and A. M. Muzafarov, “Detection technology of barely visible impact faults of force elements of aviation structures made from polymeric composite materials with the use impact-sensitive polymeric coverings with optical properties,” Konstr. Kompoz. Mater., 4, 48-53 (2018).

    Google Scholar 

  14. S. L. Tchernyshev, M. C. Zinchenkov, S. A. Smotrova, A. V. Smotrov, et al., “A luminescent polymeric film for detection of structural faults,” Patent RU 2644917, (2016).

  15. X. Zheng, Q. Wang, Y. Li, J. Luan, and N. Wang, “Microcapsule-based visualization smart sensors for damage detection: principles and applications,” Adv. Mater. Technol., 5, No. 2, Paper No. 1900832 (2020).

  16. L. V. Chursova, I. I. Sokolov, and A. I. Lyukina, “Development of polymeric syntactic and foam materials of new generation with increased operational characteristics,” Izv. Vuz. Ser. Khimia Khim. Tekhnol., 60, No. 2, 67−73 (2017).

    Article  CAS  Google Scholar 

  17. C. Kassapoglou, “Compression strength of composite sandwich structures after barely visible impact damage,” J. Compos. Technol. Res., 18, No. 4, 274-284 (1996).

    Article  CAS  Google Scholar 

  18. N. K. Naik and R. Ramasimha, “Estimation of compressive strength of delaminated composites,” Composite Structures., 52, No. 2, 199-204 (2001).

    Article  Google Scholar 

  19. H.-P. Cui, W.-D. Wen, and H.-T. Cui, “An integrated method for predicting damage and residual tensile strength of composite laminates under low velocity impact,” Computers Struct., 87, Nos. 7-8, 456-466 (2009).

    Article  Google Scholar 

  20. P.-L. Vachon, V. Brailovski, and P. Terriault, “Prediction of the propagation of impact-induced delamination in carbon/epoxy laminates,” Compos. Struct., 95, 227-235 (2013).

    Article  Google Scholar 

  21. B. Qi and I. Herszberg, “An engineering approach for predicting residual strength of carbon/epoxy laminates after impact and hygrothermal cycling,” Compos. Struct., 47, Nos. 1-4, 483-490 (1999).

    Article  Google Scholar 

  22. S. Rivallant, C. Bouvet, and N. Hongkarnjanakul, “Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements,” Composites: Part A, 55, 83-93 (2013).

    Article  CAS  Google Scholar 

  23. J. Baaran, L. Kärger, and A. Wetzel, “Efficient prediction of damage resistance and tolerance of composite aerospace structures,” Proc. Institution of Mechanical Engineers, Part G: J. Aerospace Eng., 222, Iss. 2, 179-188 (2008).

    Google Scholar 

  24. A. H. Baluch, O. Falcó, J. L. Jiménez, H. A. H. Tijs Bas, and C. S. Lopes, “An efficient numerical approach to the prediction of laminate tolerance to barely visible impact damage,” Compos. Struct., 225, Paper No. 111017 (2019).

  25. B. Fedulov and A. Fedorenko, “The analysis of the worst-case distribution of the damage in composite material imposed by a low-velocity impact,” Procedia Structural Integrity, 18, 399-405 (2019).

    Article  Google Scholar 

  26. S. Joglekar, M. Pankow, and V. Ranatunga, “A two stage finite element modeling approach to mixed mode delamination in through thickness reinforced composite laminates,” AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., (2018).

  27. M. R. Abir, T. E. Tay, M. Ridha, and H. P. Lee, “On the relationship between failure mechanism and compression after impact (CAI) strength in composites,” Compos. Struct., 182, 242-250 (2017).

    Article  Google Scholar 

  28. F. Caputo, A. de Luca, R. and Sepe, “Numerical study of the structural behaviour of impacted composite laminates subjected to compression load,” Composites: Part B, 79, 456-465 (2015).

    Article  CAS  Google Scholar 

  29. W. Tan, B. G. Falzon, L. N. S. Chiu, and M. Price, “Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates,” Composites: Part A, 71, 212-226 (2015).

    Article  CAS  Google Scholar 

  30. P. Rozylo, H. Debski, and T. Kubiak, “A model of low-velocity impact damage of composite plates subjected to Compression-After-Impact (CAI) testing,” Compos. Struct., 181, 158-170 (2017).

    Article  Google Scholar 

  31. M. V. Zhikharev, S. B. Sapozhnikov, O. A. Kudryavtsev, and V. M. Zhikharev, “Effect of tensile preloading on the ballistic properties of GFRP,” Composites: Part B, 168, 524-531 (2019).

    Article  CAS  Google Scholar 

  32. O. Buslaeva and S. Sapozhnikov, “Composite materials with the coating to detect barely visible impact based on the retroreflective film,” Solid State Phenomena., (2020). (in press).

  33. URL: http://e-izol.ru/products (declared 16.10.20)

  34. K. R. Hart, P. X. L. Chia, L. E. Sheridan, E. D. Wetzel, N. R. Sottos, and S. R. White, “Comparison of compressionafter-impact and flexure-after-impact protocols for 2D and 3D woven fiber-reinforced composites,” Composites: Part A, 101, 471-479 (2017).

    Article  CAS  Google Scholar 

  35. S. B. Sapozhnikov, Defects and Strength of the Reinforced Plastics [in Russian], Chelyabinsk, Chelyab. Gos. Tekhn. Univ., (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Sapozhnikov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 57, No. 1, pp. 69-82, January-February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buslaeva, O.S., Sapozhnikov, S.B., Bezmelnitsyn, A.V. et al. Thin Indicator Films to Assess the Residual Strength of a GFRP after a Local Contact Action. Mech Compos Mater 57, 47–56 (2021). https://doi.org/10.1007/s11029-021-09932-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09932-7

Keywords

Navigation