Skip to main content
Log in

Spectral Modeling of Deformation-Relaxation Processes in the Functional Study of Polymer Textile Materials

  • Published:
Fibre Chemistry Aims and scope

Spectral modeling of deformation-relaxation processes in polymer textile materials is considered as a tool for studying their functionality. The described spectral modeling methods help to determine the performance properties of polymer materials and informs the design of new polymer textile materials having special functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 2, 12-16 (2000).

  2. A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 2, 13-17 (2002).

  3. A.G. Makarov, N.V. Pereborova et al., Khim. Volokna [In Russian], No. 5, 44-47 (2013).

  4. V.V. Golovina, P.P. Rymkevich et al., Khim. Volokna [In Russian], No. 6, 33-40 (2013).

  5. P.P. Rymkevich, A.A. Romanova et al., J. Macromol. Sci. Part B: Physics, 52, No. 12, 1829-1847 (2013).

    Article  CAS  Google Scholar 

  6. A.G. Makarov, G.Y. Slutsker, and N.V. Drobotun, Techn. Phys., 60, No. 2, 240-245 (2015).

    Article  CAS  Google Scholar 

  7. A.G. Makarov, G.Ya. Slutsker et al., Fizika Tv. Tela [In Russian], 58, No. 4, 814-820 (2015).

  8. A.G. Makarov, A.V. Demidov et al., Khim. Volokna [In Russian], No. 6, 60-67 (2015).

  9. A.G. Makarov, N.V. Pereborova et al., Khim. Volokna [In Russian], No. 6, 68-72 (2015).

  10. A.G. Makarov, N.V. Pereborova et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 5(359), 42–48 (2015).

  11. A.G. Makarov, A.V. Demidov et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 6(360), 194-205 (2015).

  12. A.G. Makarov, N.V. Pereborova et al., Khim. Volokna [In Russian], No. 1, 37-42 (2016).

  13. A.G. Makarov, A.V. Demidov et al., Khim. Volokna [In Russian], No. 2, 52-58 (2015).

  14. A.V. Demidov, A.G. Makarov et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 1(367), 250-258 (2017).

  15. A.G. Makarov, N.V. Pereborova et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 2(368), 309-313 (2017).

  16. A.G. Makarov, N.V. Pereborova et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 4(370), 287-292 (2017).

  17. A.G. Makarov, N.V. Pereborova et al., Khim. Volokna [In Russian], No. 1, 69-73 (2017).

  18. A.G. Makarov, N.V. Pereborova et al., Khim. Volokna [In Russian], No. 2, 59-63 (2017).

  19. A.V. Demidov, A.G. Makarov et al., Khim. Volokna [In Russian], No. 4, 46-52 (2015).

  20. N.V. Pereborova, A.V. Demidov et al., Khim. Volokna [In Russian], No. 2, 36-39 (2018).

  21. A.G. Makarov, N.V. Pereborova et al., Khim. Volokna [In Russian], No. 3, 94-97 (2018).

  22. N.V. Pereborova, A.G. Makarov et al., Khim. Volokna [In Russian], No. 4, 54-56 (2018).

  23. A.G. Makarov, N.V. Pereborova et al., Khim. Volokna [In Russian], No. 4, 117-120 (2018).

  24. N.V. Pereborova, A.G. Makarov et al., Khim. Volokna [In Russian], No. 5, 89-92 (2019).

  25. N.V. Pereborova, A.G. Makarov et al., Khim. Volokna [In Russian], No. 6, 3-6 (2018).

  26. N.V. Pereborova, A.G. Makarov et al., Khim. Volokna [In Russian], No. 6, 87-90 (2018).

  27. N.V. Pereborova, A.V. Demidov et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 2(374), 251-255 (2018).

  28. N.V. Pereborova, A.G. Makarov et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 3(375), 253-257 (2018).

  29. N.V. Pereborova, A.G. Makarov et al., Khim. Volokna [In Russian], No. 5, 68-70 (2019).

  30. N.V. Pereborova, A.G. Makarov et al., Khim. Volokna [In Russian], No. 5, 71-73 (2019).

  31. N.V. Pereborova, A.V. Demidov et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 2(380), 192-198 (2019).

  32. N.V. Pereborova, A.V. Demidov et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], No. 3(381), 242-247 (2019).

Download references

The study was financed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation, Project No. FSEZ-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.G. Makarov.

Additional information

Translated from Khimicheskie Volokna, No. 4, pp. July-August, 74-77, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A., Pereborova, N., Egorov, I. et al. Spectral Modeling of Deformation-Relaxation Processes in the Functional Study of Polymer Textile Materials. Fibre Chem 52, 309–312 (2020). https://doi.org/10.1007/s10692-021-10203-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10203-3

Navigation