Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: New Four-Layer Cluster Precursor K244 = 0@12@20@80@132 and New Three-Layer Cluster Precursor K245 = 1@14@48@206 in the Rh140Al403-cP549 and Mn18Pd138Al387-cP549 Crystal Structures

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The geometric and topological analysis of the crystal structure of (i) the Rh140Al403-cP549 intermetallide with cubic cell parameters a = 19.9350 Å, V = 7922.25 Å3, and the Pm-3 space group and (ii) the Mn18Pd138Al387-cP549 intermetallide with cubic cell parameters a = 20.211 Å and Pm-3 space group is conducted by the ToposPro program package. Two new cluster precursors with the symmetry -43m is established: the K244 = 0@12@20@80@132 four-layer cluster with an inner icosahedron Pd12 or Rh12 and the three-layer cluster K245 = 1@14@48@206 with an inner 15-atom polyhedron Al@Pd8Al6 or Al@Rh8Al6. The symmetric and topological code of self-assembly processes of 3D structures from K244 and K245 nanocluster precursors is reconstructed in the following form: primary chain → microlayer → microframework. MAl3 and M2Al2 (M = Rh or Pd) clusters bound by Al atoms were adjusted as spacers occupying voids in the 3D framework of the K242 and K245 nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 1984, vol. 53, pp. 1951–1953.

    Article  CAS  Google Scholar 

  2. Inorganic Crystal Structure Database (ICSD), Karlsruhe: Fachinformationszentrum, USA: NIST.

  3. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  4. Cooper, M. and Robinson, K., The crystal structure of the ternary alloy α(AlMnSi), Acta Crystallogr., 1966, vol. 20, pp. 614–617.

    Article  CAS  Google Scholar 

  5. Puyraimond, F., Quiquandon, M., Gratias, D., et al., Atomic structure of the (Al,Si)CuFe cubic approximant phase, Acta Crystallogr., Sect. A: Found. Crystallogr., 2002, vol. 58, pp. 391–403.

    Article  Google Scholar 

  6. Cenzual, K., Chabot, B., and Parthe, E., Cubic Sc57 Rh13 and orthorhombic Hf54 Os17, two geometrically related crystal structures with rhodium- and osmium-centered icosahedra, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, vol. 41, pp. 313–319.

    Article  Google Scholar 

  7. Sugiyama, K., Kato, T., Ogawa, T., Hiraga, K., and Saito, K., Crystal structure of a new 1/1-rational approximant for the Al–Cu–Ru icosahedral phase, J. Alloys Compd., 2000, vol. 299, pp. 169–174.

    Article  CAS  Google Scholar 

  8. Kreiner, G. and Spiekermann, S., Investigations in the Ag–Mg and Ag–Al–Mg systems. I. Models for cubic approximants of icosahedral quasicrystals in the Ag–Al–Mg system, J. Alloys Compd., 1997, vol. 261, pp. 62–82.

    Article  CAS  Google Scholar 

  9. Cordier, G., Müller, V., and Froehlich, R., Crystal structure of potassium thallide (49/108), K49 Tl108, Z. Kristallogr., 1993, vol. 203, pp. 148–149.

    CAS  Google Scholar 

  10. Gomez, C.P., Ohhashi, S., Yamamoto, A., and Tsai, A.P., Disordered structures of the TM–Mg–Zn 1/1 quasicrystal approximants (TM = Hf, Zr, or Ti) and chemical intergrowth, Inorg. Chem., 2008, vol. 47, pp. 8258–8266.

    Article  CAS  Google Scholar 

  11. Sugiyama, K., Sun, W., and Hiraga, K., Crystal structure of a 2/1 cubic approximant in an Al–Rh–Si alloy, J. Non-Cryst. Solids, 2004, vol. 334, pp. 156–160.

    Article  Google Scholar 

  12. Sugiyama, K., Kaji, N., and Hiraga, K., Crystal structure of a cubic Al70 Pd23 Mn6 Si; a 2/1 rational approximant of an icosahedral phase, Z. Kristallogr., 1998, vol. 213, pp. 90–95.

    CAS  Google Scholar 

  13. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

  14. Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.

  15. Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.

    Google Scholar 

  16. Pankova, A.A., Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., γ-Brass polyhedral core in intermetallics: The nanocluster model, Inorg. Chem., 2013, vol. 52, no. 22, pp. 13 094–13 107.

    Article  Google Scholar 

  17. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: 0@12(Ga12)@24(Na12Ga12)@72(Rb4Na8Ga60) 108‑atom three-layer icosahedral cluster and 0@12(Ga12)@32(Na20Ga12) 44-atom two-layer icosahedral cluster for Rb24Na200Ga696-oF920 crystal structure self-assembly, Glass Phys. Chem., 2019, vol. 45, no. 3, pp. 151–160.

    Article  CAS  Google Scholar 

  18. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems. New cluster presursor (InNa5)(AuAu5) and primary chain with the 5m symmetry for the self-assembly of the Na32Au44In24–oP100 crystal structure, Glass Phys. Chem., 2019, vol. 45, no. 4, pp. 245–250.

    Article  CAS  Google Scholar 

  19. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling the processes of self-organization in crystal-forming systems: New two-layer clusters–precursors 0@(Na2Cd6)@(Na12Cd26) and 0@(Na3Cd6)@(Na6Cd35) for the self-assembly of the Na26Cd141hP168 crystal structure, Glass Phys. Chem., 2019, vol. 45, no. 5, pp. 311–316.

    Article  CAS  Google Scholar 

  20. Shevchenko, V.Ya., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, no. 6, pp. 2015–2027.

    Article  CAS  Google Scholar 

Download references

Funding

The nanocluster analysis was supported by the Russian Science Foundation (RSF no. 20-13-00054); the analysis of the self-assembly of the crystal structure was supported by the Ministry of Education and Science of the Russian Federation as part of a state order for the Federal Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; and the topological analysis was supported by the Ministry of Education and Science of the Russian Federation as part of state order no. 0778-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Shevchenko or G. D. Il’yushin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Il’yushin, G.D. Cluster Self-Organization of Intermetallic Systems: New Four-Layer Cluster Precursor K244 = 0@12@20@80@132 and New Three-Layer Cluster Precursor K245 = 1@14@48@206 in the Rh140Al403-cP549 and Mn18Pd138Al387-cP549 Crystal Structures. Glass Phys Chem 47, 1–12 (2021). https://doi.org/10.1134/S1087659621010107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621010107

Keywords:

Navigation