Skip to main content
Log in

Evaluation of liquid metal embrittlement crack in resistance spot welds under intensive welding condition using industrial X-ray computed tomography and machine learning

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In this work, the industrial X-ray computed tomography was exploited for measuring maximum crack depths across the weld interfaces within resistance spot welding (RSW) specimens welded under intensive welding condition. Individual crack profiles were measured for each sample and presented in terms of the total crack length, the maximum crack depth and the median crack width. A linear trend between maximum crack depth and median crack width was observed, where the associated coefficient of determination was sufficiently high (R2 = 0.79). Hence, the crack width is proposed to predict the crack depth. Based on the experimental findings, the effectiveness of the proposed method is demonstrated through machine learning studies, and a simple relation to predict the internal crack depth from the surface crack width was further developed. Semantic segmentation results proposed an algorithm succeeded in separating enough crack areas to calculate the crack width. Since Zn-assisted liquid metal embrittlement (LME) is now accepted as an inevitable consequence with respect to RSW process, the methodology demonstrated in this work can potentially offer the insights into an effective and automatic method of quantifying LME cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Becker WT, Shipley RJ (2002) Failure analysis and prevention, vol 11 ASM International

  2. Beal C (2011) Mechanical behaviour of a new automotive high manganese TWIP steel in the presence of liquid zinc

  3. Lee CW, Fan DW, Sohn IR, Lee S-J, De Cooman BC (2012) Liquid-metal-induced embrittlement of Zn-coated hot stamping steel. Metall Mater Trans A 43(13):5122–5127. https://doi.org/10.1007/s11661-012-1316-0

    Article  CAS  Google Scholar 

  4. Sj M, Wf S (1971) Heat-affected zone infiltration by dissimilar liquid weld metal 50:174s-182s

  5. Nicholas MG, Old CF (1979) Liquid metal embrittlement. J Mater Sci 14(1):1–18. https://doi.org/10.1007/BF01028323

    Article  CAS  Google Scholar 

  6. Bhattacharya D (2018) Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Mater Sci Technol 34(15):1809–1829. https://doi.org/10.1080/02670836.2018.1461595

    Article  CAS  Google Scholar 

  7. Choi D-Y, Sharma A, Uhm S-H, Jung JP (2019) Liquid metal embrittlement of resistance spot welded 1180 TRIP steel: effect of electrode force on cracking behavior. Met Mater Int 25(1):219–228. https://doi.org/10.1007/s12540-018-0180-x

    Article  CAS  Google Scholar 

  8. DiGiovanni C, Ghatei Kalashami A, Goodwin F, Biro E, Zhou NY (2021) Occurrence of sub-critical heat affected zone liquid metal embrittlement in joining of advanced high strength steel. J Mater Process Technol 288:116917. https://doi.org/10.1016/j.jmatprotec.2020.116917

    Article  CAS  Google Scholar 

  9. Choi D, Uhm S, Enloe C, Lee H, Kim G (2017) Liquid metal embrittlement of resistance spot welded 1180TRIP steel - effects of crack geometry on weld mechanical performance. doi:10.7449/2017mst/2017/mst_2017_454_462

  10. Wintjes E, Digiovanni C, He L, Bag S, Goodwin F, Biro E, Zhou Y (2019) Effect of multiple pulse resistance spot welding schedules on liquid metal embrittlement severity. J Manuf Sci Eng:1. https://doi.org/10.1115/1.4044099

  11. Frei J, Rethmeier M (2018) Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding. Welding in the World 62(5):1031–1037. https://doi.org/10.1007/s40194-018-0619-1

    Article  CAS  Google Scholar 

  12. Mohan A, Poobal S (2018) Crack detection using image processing: a critical review and analysis. Alex Eng J 57(2):787–798. https://doi.org/10.1016/j.aej.2017.01.020

    Article  Google Scholar 

  13. Wintjes E, DiGiovanni C, He L, Biro E, Zhou NY (2019) Quantifying the link between crack distribution and resistance spot weld strength reduction in liquid metal embrittlement susceptible steels. Welding in the World 63(3):807–814. https://doi.org/10.1007/s40194-019-00712-5

    Article  CAS  Google Scholar 

  14. DiGiovanni C, Bag S, Mehling C, Choi KW, Macwan A, Biro E, Zhou NY (2019) Reduction in liquid metal embrittlement cracking using weld current ramping. Welding in the World 63(6):1583–1591. https://doi.org/10.1007/s40194-019-00790-5

    Article  CAS  Google Scholar 

  15. DiGiovanni C, Biro E, Zhou NY (2019) Impact of liquid metal embrittlement cracks on resistance spot weld static strength. Sci Technol Weld Join 24(3):218–224. https://doi.org/10.1080/13621718.2018.1518363

    Article  CAS  Google Scholar 

  16. Dai W, Li D, Tang D, Jiang Q, Wang D, Wang H, Peng Y (2021) Deep learning assisted vision inspection of resistance spot welds. J Manuf Process 62:262–274. https://doi.org/10.1016/j.jmapro.2020.12.015

    Article  Google Scholar 

  17. Garrido I, Lagüela S, Otero R, Arias P (2020) Thermographic methodologies used in infrastructure inspection: a review—data acquisition procedures. Infrared Phys Technol 111:103481. https://doi.org/10.1016/j.infrared.2020.103481

    Article  Google Scholar 

  18. Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput Aided Civ Infrastruct Eng 32(5):361–378. https://doi.org/10.1111/mice.12263

    Article  Google Scholar 

  19. Yamaguchi T, Nakamura S, Saegusa R, Hashimoto S (2008) Image-based crack detection for real concrete surfaces. IEEJ Trans Electr Electron Eng 3(1):128–135. https://doi.org/10.1002/tee.20244

    Article  Google Scholar 

  20. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv 14091556

  21. Tumuluru M (2019) Effect of silicon and retained austenite on the liquid metal embrittlement cracking behavior of GEN3 and high-strength automotive steels. Weld J 98:351s–364s. https://doi.org/10.29391/2019.98.029

    Article  Google Scholar 

  22. CL Jenney AOB (1991) Welding handbook: welding processes, part 2, vol 9th edition. American Welding Society, Miami

  23. Duan R, Luo Z, Li Y, Zhang Y, Liu ZM (2015) Novel postweld heat treatment method for improving mechanical properties of resistance spot weld. Sci Technol Weld Join 20(2):100–105. https://doi.org/10.1179/1362171814Y.0000000262

    Article  CAS  Google Scholar 

  24. Hwang I, Cho H, Nam S, Kang M, Koo M-S, Kim Y-M (2019) Effects of post-weld heat treatment on mechanical properties and microstructure of resistance spot–welded lightweight steel. Int J Adv Manuf Technol 104(9):4813–4825. https://doi.org/10.1007/s00170-019-04366-x

    Article  Google Scholar 

  25. Jung G (2012) Spot weldability of TRIP-assisted steels with high carbon and aluminium contents. Sci Technol Weld Join 17:92–98. https://doi.org/10.1179/1362171811Y.0000000081

    Article  CAS  Google Scholar 

  26. Kim YG, Kim IJ, Kim JS, Chung YI, Choi DY (2014) Evaluation of surface crack in resistance spot welds of Zn-coated steel. Mater Trans Advpub 55:171–175. https://doi.org/10.2320/matertrans.M2013244

    Article  CAS  Google Scholar 

  27. Tolf E, Hedegård J, Melander A (2013) Surface breaking cracks in resistance spot welds of dual phase steels with electrogalvanised and hot dip zinc coating. Sci Technol Weld Join 18(1):25–31. https://doi.org/10.1179/1362171812Y.0000000068

    Article  CAS  Google Scholar 

  28. Siar O, Benlatreche Y, Dupuy T, Dancette S, Fabrègue D (2020) Effect of severe welding conditions on liquid metal embrittlement of a 3rd-generation advanced high-strength steel. Metals 10(9). https://doi.org/10.3390/met10091166

  29. Shen J, Zhang YS, Lai XM (2010) Influence of initial gap on weld expulsion in resistance spot welding of dual phase steel. Sci Technol Weld Join 15(5):386–392. https://doi.org/10.1179/136217110X12693513264213

    Article  CAS  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  31. Ashiri R, Shamanian M, Salimijazi HR, Haque MA, Bae J-H, Ji C-W, Chin K-G, Park Y-D (2016) Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels. Scr Mater 114:41–47. https://doi.org/10.1016/j.scriptamat.2015.11.027

    Article  CAS  Google Scholar 

  32. Choi S-G, Hwang I, Kang M, Hyun S, Kim Y-M (2018) Optimization of welding parameters in resistance spot welding of 980 MPa grade GA steel sheet using multi-response surface methodology. J Weld and Join 36:63–69. https://doi.org/10.5781/JWJ.2018.36.4.7

    Article  Google Scholar 

  33. Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. arXiv 1411:4038

    Google Scholar 

  34. Frei J, Biegler M, Rethmeier M, Böhne C, Meschut G (2019) Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation. Sci Technol Weld Join 24(7):624–633. https://doi.org/10.1080/13621718.2019.1582203

    Article  CAS  Google Scholar 

  35. Murugan S, Vijayan V, Ji C, Park Y-D (2020) Four types of LME cracks in RSW of Zn-coated AHSS. Weld J 99:75–92. https://doi.org/10.29391/2020.99.008

    Article  Google Scholar 

  36. Bewick V, Cheek L, Ball J (2003) Statistics review 7: correlation and regression. Crit Care 7(6):451–459. https://doi.org/10.1186/cc2401

    Article  Google Scholar 

  37. Zou K, Tuncali K, Silverman S (2003) Correlation and simple linear regression. Radiology 227:617–622. https://doi.org/10.1148/radiol.2273011499

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by POSCO (Korea) and Incheon National University Research Grant in 2018 (2018-0458). The authors would like to thank Dongman Suh in Raynar CO. LTD for a support of eddy current testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeong-Jin Kim or Tea-Sung Jun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SC., Park, HM., Uhm, SH. et al. Evaluation of liquid metal embrittlement crack in resistance spot welds under intensive welding condition using industrial X-ray computed tomography and machine learning. Weld World 65, 1887–1897 (2021). https://doi.org/10.1007/s40194-021-01109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01109-z

Keywords

Navigation