Skip to main content
Log in

Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Aggregation induced emission (AIE) luminogens (AIEgens) have great potential in the field of organic optoelectronic devices because of their highly efficient emission property in solid state. For example, high efficiency organic light-emitting diodes (OLEDs) based on AIEgens have been developed successfully. Some AIEgens also show good photovoltaic response properties for organic solar cells (OSCs) and organic photodetectors (OPDs), and lasing properties for optically pumping organic lasers (OLs). The review will cover the status and prospects of AIEgens in OLEDs, OLs, OSCs and OPDs. It is expected that AIEgens will become an important organic optoelectronic material system in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Forrest SR (2020) Organic electronics: foundations to applications. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Meng LX, Zhang YM, Wan XJ, Li CX, Zhang X, Wang YB, Ke X, Xiao Z, Ding LM, Xia RX, Yip H-L, Cao Y, Chen YS (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361:1094

    Article  CAS  Google Scholar 

  3. Tang CW, VanSlyke SA (1987) Organic electroluminescent devices. Appl Phys Lett 51:913

    Article  CAS  Google Scholar 

  4. Baldo MA, OBrien DF, You Y, Shoustikov A, Thompson ME, Forrest SR (1998) High efficiency phosphorescent emission from organic electroluminescent devices. Nature 395:151

    Article  CAS  Google Scholar 

  5. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234

    Article  CAS  Google Scholar 

  6. Kozlov V, Parthasarathy G, Burrows PE, Khalfin V, Wang J, Chou S, Forrest SR (2000) Structures for organic diodes lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J Quantum Electron 36:18

    Article  CAS  Google Scholar 

  7. Wang GD, Adil MA, Zhang JQ, Wei ZX (2019) Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv Mater 31:1805089

    Article  CAS  Google Scholar 

  8. Yang DZ, Ma DG (2019) Development of organic semiconductor photodetectors: from mechanism to applications. Adv Opt Mater 7:1800522

    Article  Google Scholar 

  9. Mei J, Hong YN, Lam JWY, Qin AJ, Tang YH, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429

    Article  CAS  PubMed  Google Scholar 

  10. Luo JD, Xie ZL, Lam JWY, Cheng L, Tang BZ, Chen HY, Qiu CF, Kwok HS, Zhan XW, Liu YQ, Zhu DB (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740

    Article  Google Scholar 

  11. Xu Z, Gu JB, Qiao XF, Qin AJ, Tang BZ, Ma DG (2019) Highly efficient deep blue aggregation-induced emission organic molecule: A promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll-off. ACS Photon 6:767

    Article  CAS  Google Scholar 

  12. Xu Z, Tang BZ, Wang Y, Ma DG (2020) Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters. J Mater Chem C 8:2614

    Article  CAS  Google Scholar 

  13. Liu H, Guo JJ, Zhao ZJ, Tang BZ (2019) Aggregation-induced delayed fluorescence. ChemPhotoChem 3:993

    Article  CAS  Google Scholar 

  14. Liu WW, Yu HK, Hu RR, Xu T, Lun YP, Gan JL, Xu SH, Yang ZM, Tang BZ (2019) Microlasers from AIE-active BODIPY derivative. Small 16:1907074

    Article  Google Scholar 

  15. Adil MA, Zhang JQ, Wang YH, Yu JD, Yang C, Lu GH, Wei ZX (2020) Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules. Nano Energy 68:104271

    Article  CAS  Google Scholar 

  16. Guo DC, Xu Z, Yang DZ, Ma DG, Tang BZ, Vadim A (2020) Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material. Nanoscale 12:2648

    Article  PubMed  Google Scholar 

  17. Huang YJ, Wang ZR, Chen Z, Zhang QC (2019) Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew Chem Inter Ed 58:9696

    Article  CAS  Google Scholar 

  18. Brütting W, Frischeisen J (2012) Device efficiency of organic light-emitting diodes. In: Brütting W, Adachi C (eds) Physics of organic semiconductors. Wiley, Weinheim

    Chapter  Google Scholar 

  19. Shi LL, Liang QB, Wang WY, Zhang Y, Li GH, Ji T, Hao YY, Cui YX (2018) Research progress in organic photomultiplication photodetectors. Nanomaterials 8:713

    Article  PubMed Central  Google Scholar 

  20. Qin W, Yang ZY, Jiang YB, Lam JWY, Liang GD, Kwok HS, Tang BZ (2015) Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes. Chem Mater 27:3892

    Article  CAS  Google Scholar 

  21. Zhan XJ, Wu ZB, Lin YX, Xie YJ, Peng Q, Li QQ, Ma DG, Li Z (2016) Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect. Chem Sci 7:4355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin GW, Chen L, Peng HR, Chen SM, Zhuang ZY, Li YH, Wang BH, Zhao ZJ, Tang BZ (2017) 3,4-Donor- and 2,5-acceptor-functionalized dipolar siloles: synthesis, structure, photoluminescence and electroluminescence. J Mater Chem C 5:4867

    Article  CAS  Google Scholar 

  23. Liu TX, Zhu LP, Zhong C, Xie GH, Gong SL, Fang JF, Ma DG, Yang CL (2017) Naphthothiadiazole-based near-infrared emitter with a photoluminescence quantum yield of 60% in neat film and external quantum efficiencies of up to 3.9% in nondoped OLEDs. Adv Funct Mater 27:1606384

    Article  Google Scholar 

  24. Li YH, Xu Z, Zhu XY, Chen B, Wang ZM, Xiao B, Lam JWY, Zhao ZJ, Ma DG, Tang BZ (2019) Creation of efficient blue aggregation-induced emission luminogens for high-performance nondoped blue OLEDs and hybrid white OLEDs. ACS Appl Mater Interfaces 11:17592

    Article  CAS  PubMed  Google Scholar 

  25. Xu Z, Gong YB, Dai YF, Sun Q, Yang DZ, Zhan XJ, Li Z, Tang BZ, Ma DG (2019) High efficiency and low roll-Off hybrid WOLEDs by using a deep blue aggregation-induced emission material simultaneously as blue emitter and phosphor host. Adv Opt Mater 7:1801539

    Article  Google Scholar 

  26. Guo XM, Yuan PS, Qiao XF, Yang DZ, Dai YF, Sun Q, Qin AJ, Tang BZ, Ma DG (2020) Mechanistic study on high efficiency deep blue AIE-based organic light-emitting diodes by magneto-electroluminescence. Adv Funct Mater 30:1908704

    Article  CAS  Google Scholar 

  27. Han PB, Xu Z, Lin CW, Ma DG, Qin AJ, Tang BZ (2020) Tetraphenylbenzene-based AIEgens: horizontally oriented emitters for highly efficient non-doped deep blue OLEDs and hosts for high-performance hybrid WOLEDs. J Mater Chem C 8:7012

    Article  CAS  Google Scholar 

  28. Liu BQ, Nie H, Zhou XB, Hu SB, Luo DX, Gao DY, Zou JH, Xu M, Wang L, Zhao ZJ, Qin AJ, Peng JP, Ning HL, Cao Y, Tang BZ (2016) Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: A novel concept to achieve high-performance hybrid white organic light-emitting diodes. Adv Funct Mater 26:776

    Article  CAS  Google Scholar 

  29. Liu BQ, Nie H, Lin GW, Hu SB, Gao DY, Zou JH, Xu M, Wang L, Zhao ZJ, Ning HL, Peng JP, Cao Y, Tang BZ (2017) High-performance doping-free hybrid white OLEDs based on blue aggregation-induced emission luminogens. ACS Appl Mater Interfaces 9:34162

    Article  CAS  PubMed  Google Scholar 

  30. Chen B, Liu BQ, Zeng JJ, Nie H, Xiong Y, Zou JH, Ning HL, Wang ZM, Zhao ZJ, Tang BZ (2018) Efficient bipolar blue AIEgens for high-performance nondoped blue OLEDs and hybrid white OLEDs. Adv Funct Mater 28:1803369

    Article  Google Scholar 

  31. Xu Z, Gu JB, Huang J, Lin CW, Li YZ, Yang DZ, Qiao XF, Qin AJ, Zhao ZJ, Tang BZ, Ma DG (2019) Design and performance study of high efficiency/low efficiency roll-off/high CRI hybrid WOLEDs based on aggregation-induced emission materials as fluorescent emitters. Mater Chem Front 3:2652

    Article  CAS  Google Scholar 

  32. Huang J, Nie H, Zeng JJ, Zhuang ZY, Gan SF, Cai YJ, Guo JJ, Su SJ, Zhao ZJ, Tang BZ (2017) Highly efficient nondoped OLEDs with negligible efficiency roll-off fabricated from aggregation-induced delayed fluorescence luminogens. Angew Chem Inter Ed 56:12971

    Article  CAS  Google Scholar 

  33. Lv CY, Liu WW, Luo Q, Yi HY, Yu HK, Yang ZM, Zou B, Zhang YJ (2020) A highly emissive AIE-active luminophore exhibiting deep-red to near-infrared piezochromism and high-quality lasing. Chem Sci 11:4007

    Article  CAS  Google Scholar 

  34. Liu YH, Mu C, Jiang K, Zhao JB, Li YK, Zhang L, Li ZK, Lai JYL, Hu HW, Ma TX, Hu RR, Yu DM, Huang XH, Tang BZ, Yan H (2015) A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv Mater 27:1015

    Article  CAS  PubMed  Google Scholar 

  35. Lin HR, Chen SS, Hu HW, Zhang L, Ma TX, Lai JYL, Li ZK, Qin AJ, Huang XH, Tang BZ, Yan H (2016) Reduced intramolecular twisting improves the performance of 3d molecular acceptors in non-fullerene organic solar cells. Adv Mater 28:8546

    Article  CAS  PubMed  Google Scholar 

  36. Duan CH, Zhang K, Zhong CM, Huang F, Cao Y (2013) Recent advances in water/alcohol-soluble π-conjugated materials: New materials and growing applications in solar cells. Chem Soc Rev 42:9071

    Article  CAS  PubMed  Google Scholar 

  37. Wang C, Liu ZY, Li MS, Xie YJ, Li BS, Wang S, Xue S, Peng Q, Chen B, Zhao ZJ, Li QQ, Ge ZY, Li Z (2017) The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chem Sci 8:3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant no. 21788102), and the Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, China (2019B030301003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongge Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Aggregation Induced Emission”; edited by Youhong Tang and Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D. Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices. Top Curr Chem (Z) 379, 16 (2021). https://doi.org/10.1007/s41061-021-00328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00328-8

Keywords

Navigation