Skip to main content
Log in

Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose the fuzzy Shehu transform method (FSTM) using Zadeh’s decomposition theorem and fuzzy Riemann integral of real-valued functions on finite intervals. As an alternative to standard fuzzy Laplace transform and the fuzzy Sumudu integral transform, we established some potential useful (new or known) properties of the FSTM and validate their applications. Furthermore, the FSTM is coupled with the well-known homotopy analysis method to obtain the approximate and exact solutions of fuzzy differential equations of integer and non-integer order derivatives. The convergence analysis and the error analysis of the suggested technique are provided and supported by graphical solutions. Comparison of the numerical simulations of exact and approximate solutions of two fuzzy fractional partial differential equations are tabulated to further justify the reliability and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal Theory Methods Appl 76(2):2859–2862

    Article  MathSciNet  MATH  Google Scholar 

  • Akbarzadeh GZ, Mohseni MM (2011) Solving fuzzy differential equations by Runge–Kutta method. J Math Comput Sci 2:208–221

    Article  Google Scholar 

  • Akinyemi L, Iyiola OS (2020) Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math Method Appl Sci. https://doi.org/10.1002/mma.6484

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi L, Iyiola OS (2020) A reliable technique to study nonlinear time-fractional coupled Korteweg–de Vries equations. Adv Differ Equ 2020:169

    Article  MathSciNet  Google Scholar 

  • Akinyemi L, Senol M, Iyiola OS (2021) Exact solutions of the generalized multidimensional mathematical physics models via sub-equation. Math Comput Simul 182:211–233

    Article  MathSciNet  MATH  Google Scholar 

  • Allahviranloo T (2008) An analytic approximation to the solution of fuzzy heat equation by Adomian decomposition method. Int J Contemp Math Sci 4:105–114

    MathSciNet  MATH  Google Scholar 

  • Allahviranloo T, Ahmadi MB (2010) Fuzzy Laplace transform. Soft Comput 14:235–243

    Article  MATH  Google Scholar 

  • Allahviranloo T, Salahshour S, Abbasbandy S (2012) Explicit solutions of fractional differential equations with uncertainty. Soft Comput 16:297–302

    Article  MATH  Google Scholar 

  • Allahviranloo T, Armand A, Gouyandeh Z (2014) Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J Intell Fuzzy Syst 26:1481–1490

    Article  MathSciNet  MATH  Google Scholar 

  • Appadoo SS, Thavaneswaran A (2013) Recent developments in fuzzy sets approach in option pricing. J Math Financ 03(2):312–322

    Article  Google Scholar 

  • Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151:581–599

    Article  MATH  Google Scholar 

  • Belgacem R, Baleanu D, Bokhari A (2019) Shehu transform and applications to Caputo-fractional differential equations. Int J Anal Appl 17:917–927

    Google Scholar 

  • Bezdek JC (1978) Fuzzy partitions and relations and axiomatic basis for clustering. Fuzzy Sets Syst 1:111–127

    Article  MathSciNet  MATH  Google Scholar 

  • Bokharia A, Baleanu D, Belgacema R (2020) Application of Shehu transform to Atangana–Baleanu derivatives. J Math Comput Sci 20:101–107

    Article  Google Scholar 

  • Chakraverty S, Tapaswini S, Behera D (2012) Fuzzy arbitrary order system: fuzzy fractional differential equations and applications. J Comput Phys 231(4):1743–1750

    MathSciNet  MATH  Google Scholar 

  • Chang SL, Zadeh LA (1972) On fuzzy mapping and control. IEEE Trans Syst Cybern 2:30–34

    Article  MathSciNet  MATH  Google Scholar 

  • de Oliveira EC, Machado JT, Kiryakova V, Mainardi F (2014) A review of definitions for fractional derivatives and integral. Math Probl Eng 2014:1–6

    Article  MathSciNet  Google Scholar 

  • Dubois D, Oulloy L, Mauris G, Prade H (2004) Probability possibility transformations, triangular fuzzy sets and probability inequalities. Reliab Comput 10:273–297

    Article  MathSciNet  MATH  Google Scholar 

  • Fatihu HM, Jen YH, Ahmed CI, Haruna C, Tufan K (2017) A survey on advancement of hybrid type 2 fuzzy sliding mode control. Neural Comput Appl 30(2):331–3531027

    Google Scholar 

  • Gong Z, Hao Y (2018) Fuzzy Laplace transform based on the Henstock integral and its applications in discontinuous fuzzy systems. Fuzzy Sets Syst. https://doi.org/10.1016/j.fss.2018.04.005

    Article  MATH  Google Scholar 

  • Gong ZT, Wang LL (2012) The Henstock–Stieltjes integral for fuzzy-number-valued functions. Inf Sci 188:276–297

    Article  MathSciNet  MATH  Google Scholar 

  • Henstock R (1963) Theory of integration. Butterworth, London

    MATH  Google Scholar 

  • Jafari R, Razvarz S (2019) Solution of fuzzy differential equations using fuzzy Sumudu transforms. Math Comput Appl 23:1–15

    MathSciNet  MATH  Google Scholar 

  • Jafari H, Saeidy M, Baleanu D (2012) The variational iteration method for solving $n$-th order fuzzy differential equations. Cent Eur J Phys 10:76–85

    Google Scholar 

  • Kahraman C, Onar SC, Oztaysi B, Sari IU, Cebi S, Tolga AC (2020) Intelligent and fuzzy techniques: smart and innovative solutions. In: Proceedings of the INFUS 2020 conference, Istanbul, Turkey, July 21–23

  • Khana MJ, Kumam P, Liud P, Kumam W, Rehman H (2019) An adjustable weighted soft discernibility matrix based on generalized picture fuzzy soft set and its applications in decision making. J Intell Fuzzy Syst 2019:1–16. https://doi.org/10.3233/JIFS-190812

    Article  Google Scholar 

  • Khana MJ, Kumam P, Ashraf S, Kumam W (2019) Generalized picture fuzzy soft sets and their application in decision support systems. Symmetry 11:415

    Article  MATH  Google Scholar 

  • Khana MJ, Phiangsungnoen S, Rehman H, Kumam W (2020) Applications of generalized picture fuzzy soft set in concept selection. Thai J Math 18:296–314

    MathSciNet  Google Scholar 

  • Khana MJ, Kumam P, Liu P, Kumam W, Ashraf S (2020) A novel approach to generalized intuitionistic fuzzy soft sets and its application in decision support system. Mathematics 7:742

    Article  Google Scholar 

  • Khana MJ, Kumam P, Alreshidi NA, Shaheen N, Kumam W, Shah Z, Thounthong P (2020) The renewable energy source selection by remoteness index-based VIKOR method for generalized intuitionistic fuzzy soft sets. Symmetry 12:977

    Article  Google Scholar 

  • Khana MJ, Kumam P, Deebani W, Kumam W, Shah Z (2020) Bi-parametric distance and similarity measures of picture fuzzy sets and their applications in medical diagnosis. Egypt Inform J. https://doi.org/10.1016/j.eij.2020.08.002

    Article  Google Scholar 

  • Khana MJ, Kumam P, Deebani W, Kumam W, Shah Z (2020) Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects. Mathematics 8:519

    Article  Google Scholar 

  • Khastan A, Bahrami F, Ivaz K (2009) New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability. Bound Value Probl 2009:1–13

    Article  MATH  Google Scholar 

  • Kuzmin VB (1982) Building group decisions in spaces of strict and fuzzy binary relations (in Russian). Nauka, Moscow

  • Langari R (1992) A nonlinear formulation of a class of fuzzy linguistic control algorithms. In: 1992 Amer. contr. conf., Chicago, IL, pp 2273–2278

  • Liao SJ (1995) An approximate solution technique not depending on small parameters: a special example. Int J Non-Linear Mech 30:371–380

    Article  MathSciNet  MATH  Google Scholar 

  • Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16:1140–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Maitama S, Zhao W (2019) New Laplace-type integral transform for solving steady heat-transfer problem. Therm Sci 25:1–12

    Article  Google Scholar 

  • Maitama S, Zhao W (2019) New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations. Int J Anal Appl 17(2):167–190

    MATH  Google Scholar 

  • Maitama S, Zhao W (2019) Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets. Comput Appl Math 38(2):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Najeeb AK, Oyoon AR, Muhammad A (2015) On the solution of fuzzy differential equations by fuzzy Sumudu transform. Nonlinear Eng 2015:49–60

    Google Scholar 

  • Puri ML, Ralescu DA (1986) Fuzzy random variables. Anal Appl 114:409–422

    Article  MathSciNet  MATH  Google Scholar 

  • Salah A, Khan M, Gondal MA (2013) A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method. Neural Comput 23:269–271

    Article  Google Scholar 

  • Salahshour S, Allahviranloo T, Abbasbandy S (2012) Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun Nonlinear Sci Numer Simul 17:1372–1381

    Article  MathSciNet  MATH  Google Scholar 

  • Salii VN (1965) Binary L-relations. Izv Vysh Uchebn Zaved Matematika (in Russian) 44(1):133–145

    MathSciNet  Google Scholar 

  • Senol M, Iyiola OS, Kasmaei HD, Akinyemi L (2019) Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential. Adv Differ Equ 2019:1–21

    Article  Google Scholar 

  • Senol M, Atpinar S, Zararsiz Z, Salahshour S, Ahmadian A (2019) Approximate solution of time-fractional fuzzy partial differential equations. Comput Appl Math 151:581–99

    MathSciNet  MATH  Google Scholar 

  • Shah K, Seadawy AR, Arfan M (2020) Evaluation of one dimensional fuzzy fractional partial differential equations. Alex Eng J 59:3347–3353

    Article  Google Scholar 

  • Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Nonlinear physical science. Springer, Heidelberg

    Google Scholar 

  • Valerio D, Trujillo JJ, Rivero M, Machado JT, Baleanu D (2013) Fractional calculus: a survey of useful formulas. Eur Phys J Spec Top 22(8):1827–1846

    Article  Google Scholar 

  • Wang Q (2008) Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Solitons Fract 35:843–850

    Article  MathSciNet  MATH  Google Scholar 

  • Yen J, Langari R, Zadeh LA (1995) Industrial applications of fuzzy logic and intelligent systems. IEEE Press, New York

    MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1975) The concept of linguistic variable and its application to approximate reasoning I, II and III. Inf Sci 8(199–249):301–357

    Article  MATH  Google Scholar 

  • Zararsiz Z (2015) Similarity measures of sequence of fuzzy numbers and fuzzy risk analysis. Adv Math Phys 2015:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Zureigat H, Izani AI, Sathasivam S (2019) Numerical solutions of fuzzy fractional diffusion equations by an implicit finite difference scheme. Neural Comput Appl 31:4085–4094

    Article  Google Scholar 

Download references

Funding

This research is partially supported by the National Natural Science Foundations of China (11571206, 12071261, 12001539, 11831010, 11871068), the Science Challenge Project (TZ2018001), and the National Key Basic Research Program (2018YFA0703903). The first author also acknowledges the financial support of China Scholarship Council (CSC) (2017GXZ025381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehu Maitama.

Additional information

Communicated by Anibal Tavares de Azevedo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we proof some basic properties of fuzzy Shehu transform.

Property 1

Linearity property. Suppose \(\tilde{f}(t)\) and \(\tilde{g}(t)\) be continuous fuzzy-valued functions, and \(\vartheta \) and \(\beta \) be constants, and then:

$$\begin{aligned} \mathbf{S} \left[ \vartheta \odot \tilde{f}(t)\oplus \beta \odot \tilde{g}(t)\right] =\vartheta \odot \mathbf{S} \left[ \tilde{f}(t)\right] \oplus \beta \odot \mathbf{S} \left[ \tilde{g}(t)\right] . \end{aligned}$$
(107)

Proof

Let \(r\in [0,1]\) be arbitrary fixed. Then, using Eq. (21), we have:

$$\begin{aligned}&\mathbf{S} \left[ \vartheta \odot \tilde{f}(t)\oplus \beta \odot \tilde{g}(t)\right] \\&\quad =\int _{0}^{\infty }(\vartheta \odot \tilde{f}(t)\oplus \beta \odot \tilde{g}(t))\odot \exp \left( \frac{-p}{q}t\right) \mathrm{d}t\\&\quad =\int _{0}^{\infty }\vartheta \odot \tilde{f}(t)\odot \exp \left( \frac{-p}{q}t\right) \mathrm{d}t\oplus \int _{0}^{\infty }\beta \odot \tilde{g}(t)\odot \exp \left( \frac{-p}{q}t\right) \mathrm{d}t\\&\quad =\left( \vartheta \odot \int _{0}^{\infty }\tilde{f}(t)\odot \exp \left( \frac{-p}{q}t\right) \mathrm{d}t\right) \oplus \left( \beta \odot \int _{0}^{\infty }\tilde{g}(t)\odot \exp \left( \frac{-p}{q}t\right) \mathrm{d}t\right) \\&\quad =\vartheta \odot \left( \int _{0 }^{\infty }\exp \left( \frac{-p}{q}t\right) \underline{f}(t;r)\mathrm{d}t,\int _{0 }^{\infty }\exp \left( \frac{-p}{q}t\right) \bar{f}(t;r)\mathrm{d}t\right) \\&\qquad \oplus \beta \odot \left( \int _{0 }^{\infty }\exp \left( \frac{-p}{q}t\right) \underline{g}(t;r)\mathrm{d}t,\int _{0 }^{\infty }\exp \left( \frac{-p}{q}t\right) \bar{g}(t;r)\mathrm{d}t\right) \\&\quad =\vartheta \odot \mathbf{S} \left[ \tilde{f}(t)\right] \oplus \beta \odot \mathbf{S} \left[ \tilde{g}(t)\right] . \end{aligned}$$

The proof is complete. \(\square \)

Property 2

Scaling property. Let \(\vartheta \) be an arbitrary constant and \(\tilde{f}(\vartheta t)\) be an integrable fuzzy-valued functions, and then:

$$\begin{aligned} \mathbf{S} \left[ \tilde{f}(\vartheta t)\right] =\frac{1}{\vartheta }F\left( \frac{p}{\vartheta },q\right) . \end{aligned}$$
(108)

Proof

Using the Definition 9 of fuzzy Shehu transform, we obtain:

$$\begin{aligned} \mathbf{S} \left[ \tilde{f}(\vartheta t)\right]= & {} \int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot \tilde{f}(\vartheta t)\mathrm{d}t. \end{aligned}$$
(109)

Let \(r\in [0,1].\) Substituting \(\zeta =\vartheta t\) and \(\mathrm{d}t=\frac{\mathrm{d}\zeta }{\vartheta }\) in Eq. (109) yields:

$$\begin{aligned} \mathbf{S} \left[ \tilde{f}(\vartheta t)\right]= & {} \frac{1}{\vartheta }\odot \int _{0 }^{\infty }\exp \left( \frac{-p\zeta }{q\vartheta }\right) \odot \tilde{f}(\zeta )\mathrm{d}\zeta =\frac{1}{\vartheta }\odot \int _{0 }^{\infty }\exp \left( \frac{-pt}{q\vartheta }\right) \odot \tilde{f}\left( t\right) \mathrm{d}t\\= & {} \frac{1}{\vartheta }\odot \int _{0 }^{\infty }\exp \left( \frac{-pt}{\vartheta }\right) \odot \tilde{f}(qt)\mathrm{d}t\\= & {} \left( \frac{1}{\vartheta }\int _{0 }^{\infty }\exp \left( \frac{-pt}{\vartheta }\right) \underline{f}(qt;r)\mathrm{d}t,\frac{1}{\vartheta }\int _{0 }^{\infty }\exp \left( \frac{-pt}{\vartheta }\right) \bar{f}(qt;r)\mathrm{d}t\right) \\= & {} \left( \frac{1}{\vartheta }{\underline{F}}\left( \frac{p}{\vartheta },q\right) ,\frac{1}{\vartheta }\bar{F}\left( \frac{p}{\vartheta },q\right) \right) =\frac{1}{\vartheta }\odot F\left( \frac{p}{\vartheta },q\right) . \end{aligned}$$

This complete the proof. \(\square \)

Property 3

Exponential shifting property. Let the \(\tilde{f}(t)\) be a continuous fuzzy-valued function on \([0,\infty )\) and \(\vartheta \) be an arbitrary constant, and then:

$$\begin{aligned} \mathbf{S} \left[ \exp \left( \vartheta t\right) \odot \tilde{f}(t)\right] (p,q)=F(p-\vartheta q,q). \end{aligned}$$
(110)

Proof.

From Eq. (21), we get:

$$\begin{aligned}&\mathbf{S} \left[ \tilde{f}(t)\right] (p,q)= q\odot \int _{0 }^{\infty }\exp \left( -pt\right) \odot \tilde{f}(qt)\mathrm{d}t. \end{aligned}$$
(111)

Then, for any fixed \(r\in [0,1]\), we have:

$$\begin{aligned}&\mathbf{S} \left[ \exp \left( \vartheta t\right) \odot \tilde{f}(t)\right] (p,q)=\int _{0}^{\infty }\exp \left( (\vartheta t)\right) \odot \exp \left( \frac{-pt}{q}\right) \odot \tilde{f}(t)\mathrm{d}t\nonumber \\&\quad =\int _{0 }^{\infty }\exp \left( -\frac{(p-\vartheta q)}{q}\right) \odot \tilde{f}(t)\mathrm{d}t=q\odot \int _{0}^{\infty }\exp \left( -(p-\vartheta q)t\right) \odot \tilde{f}(qt)\mathrm{d}t\nonumber \\&\quad =\left( \int _{0 }^{\infty }\exp \left( -(p-\vartheta q)t\right) \underline{f}(qt;r)\mathrm{d}t,\int _{0 }^{\infty }\exp \left( -(p-\vartheta q)t\right) \bar{f}(qt;r)\mathrm{d}t\right) \nonumber \\&\quad =\left( {\underline{F}}(p-\vartheta q,q),\bar{F}(p-\vartheta q,q)\right) =\mathbf{S} \left[ f(t)\right] (p-\vartheta q)=F(p-\vartheta q,q). \end{aligned}$$
(112)

Property 4

Multiple shift property. Let \(\tilde{f}(t)\) be a continuous fuzzy-valued function on \([0,\infty )\) and \(\mathbf{S} \left[ \tilde{f}(t)\right] (p,q)=F(p,q)\), and then:

$$\begin{aligned} \mathbf{S} \left[ t^n\odot \tilde{f}(t)\right] (p,q)=(-q)^n\odot \frac{d^n}{dp^n}F(p,q). \end{aligned}$$
(113)

Proof.

Applying Eq. (21) and Leibniz’s rule, we obtain:

$$\begin{aligned}&\frac{d}{d p}F(p,q)=\frac{d}{d p}\int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot \tilde{f}(t)\mathrm{d}t=\int _{0 }^{\infty }\frac{\partial }{\partial p}\left( \exp \left( \frac{-pt}{q}\right) \right) \odot \tilde{f}(t)\mathrm{d}t\nonumber \\&\quad =-\frac{1}{q}\int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot t\odot \tilde{f}(t)\mathrm{d}t=\mathbf{S} \left[ t\odot \tilde{f}(t)\right] (p,q)\nonumber \\&\quad =-q\odot \frac{d}{d p}F(p,q)\,\,\,(for\,\, n=1). \end{aligned}$$
(114)

Besides, to generalize the result of Eq. (114), we assume Eq. (113) holds for \(n=k\), and then:

$$\begin{aligned}&\int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot t^k\odot \tilde{f}(t)\mathrm{d}t=(-q)^k\odot \frac{d^k}{dp^k}F(p,q). \end{aligned}$$
(115)

Thus:

$$\begin{aligned}&\frac{d}{d p}\int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot t^k\odot \tilde{f}(t)\mathrm{d}t=(-q)^k\odot \frac{d^{k+1}}{dp^{k+1}}F(p,q). \end{aligned}$$
(116)

Thanks to Leibniz’s rule which help us to get:

$$\begin{aligned}&\frac{d}{d p}\int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot t^k\odot \tilde{f}(t)\mathrm{d}t=\int _{0 }^{\infty }\frac{\partial }{\partial p}\left( \exp \left( \frac{-pt}{q}\right) \right) \odot t^k\odot \tilde{f}(t)\mathrm{d}t\nonumber \\&\quad =-\frac{1}{q}\odot \int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot t^{k+1}\odot \tilde{f}(t)\mathrm{d}t=(-q)^k\odot \frac{d^{k+1}}{dp^{k+1}}F(p,q). \end{aligned}$$
(117)

The above result yields:

$$\begin{aligned}&\int _{0 }^{\infty }\exp \left( \frac{-pt}{q}\right) \odot t^{k+1}\odot \tilde{f}(t)\mathrm{d}t=(-q)^{k+1}\odot \frac{d^{k+1}}{dp^{k+1}}F(p,q). \end{aligned}$$
(118)

Finally, Eq. (117) validates the result of Eq. (113) holds for \(n=k+1\). The proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitama, S., Zhao, W. Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives. Comp. Appl. Math. 40, 86 (2021). https://doi.org/10.1007/s40314-021-01476-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01476-9

Keywords

Mathematics Subject Classification

Navigation