Skip to main content
Log in

Thrombin in the Activation of the Fluid Contact Phase in Patients with Hereditary Angioedema Carrying the F12 P.Thr309Lys Variant

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Hereditary angioedema due to pathogenic FXII variants (HAE-FXII) is a rare dominant disease caused by increased activation of the plasma contact system. The most prevalent HAE-FXII variant, c.1032C > A p.Thr309Lys (FXII309Lys), results in a smaller FXII protein with increased sensitivity to fluid-phase activation by poorly understood mechanisms. We aimed to investigate the functionality of the FXII309Lys variant in 33 HAE-FXII patients, 25 healthy controls and 46 patients with congenital disorders of glycosylation (CDG). Activation of the plasma contact system was assessed by western blot and amidolytic assay in basal conditions or after treatment with either artificial or physiological activators. Recombinant wild-type and FXII309Lys variants were expressed in S2 insect (Drosophila) cells. Amidolytic and fibrin generation assays were performed in fresh plasma samples. FXII309Lys samples exhibited an increased electrophoretic mobility comparable with N-glycan-deficient FXII from CDG patients and asialo-FXII generated by neuraminidase treatment. They presented increased sensitivity to activation by dextran sulphate and silica which resulted in the generation of an aberrant 37-kDa heavy chain. We did not observe increased susceptibility of FXII309Lys to proteolysis by exogenous or tPA-generated plasmin. However, both exogenous and endogenous thrombin cleaved the FXII309Lys variant, releasing a 37-kDa fragment and resulting in enhanced proteolytic activation on the fluid phase. This model supports a sequential proteolytic activation process involving thrombin priming of FXII309Lys, followed by kallikrein cleavage and generation of active βFXIIa. The present results and the observation that angioedema episodes in HAE-FXII patients occur predominantly during hypercoagulable situations suggest a key role for thrombin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All datasets presented in this study are included in the article/Supplementary Material.

Abbreviations

CAS :

Contact activation system

CDG :

Congenital disorders of glycosylation

DTT :

Dithiothreitol

FXII :

Coagulation factor XII

FXIIa:

Two-chain active form of coagulation factor FXII

βFXIIa:

Fluid-phase active form of coagulation factor FXII

FXII-HAE :

Hereditary angioedema with coagulation FXII variants

HAE :

Hereditary angioedema

KKS :

Kallikrein-kinin system

NHP:

Normal healthy persons

PK :

Plasma prekallikrein

PKa :

Plasma kallikrein

tPA:

Tissue plasminogen activator

References

  1. Kaplan AP, Greaves MW (2005) Angioedema. J Am Acad Dermatol 53(3):373–388

    Article  Google Scholar 

  2. Maas C, López-Lera A (2019) Hereditary angioedema: insights into inflammation and allergy. Mol Immunol 112:378–386

    Article  CAS  Google Scholar 

  3. Donaldson VH, Evans RR (1963) A biochemical abnormality in hereditary angioneurotic edema. Absence of serum inhibitor of C′1-esterase. Am. J. Med 35(1):37–44

  4. Rosen FS, Charache P, Pensky J et al (1965) Hereditary angioneurotic edema: two genetic variants. Science (80-. ) 148(3672):957–958

  5. Cicardi M, Zuraw BL (2018) Angioedema due to bradykinin dysregulation. J Allergy Clin Immunol Pract 6(4):1132–1141

    Article  Google Scholar 

  6. Binkley KE, Davis A (2000) Clinical, biochemical, and genetic characterization of a novel estrogen-dependent inherited form of angioedema. J Allergy Clin Immunol 106(3):546–550

    Article  CAS  Google Scholar 

  7. Dewald G, Bork K (2006) Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun 343(4):1286–1289

    Article  CAS  Google Scholar 

  8. Citarella F, Misiti S, Felici A et al (1996) Estrogen induction and contact phase activation of human factor XII. Steroids 61(4):270–276

    Article  CAS  Google Scholar 

  9. Naudin C, Burillo E, Blankenberg S et al (2017) Factor XII contact activation. Semin Thromb Hemost 43(8):814–826

    Article  CAS  Google Scholar 

  10. Maas C, Renne T (2018) Coagulation factor XII in thrombosis and inflammation. Blood 131(17):1903–1909

    Article  CAS  Google Scholar 

  11. Cichon S, Martin L, Hennies HC et al (2006) Increased activity of coagulation factor XII (Hageman Factor) causes hereditary angioedema type III. Am J Hum Genet 79(6):1098–1104

    Article  CAS  Google Scholar 

  12. Bork K, Kleist R, Hardt J et al (2009) Kallikrein - Kinin system and fibrinolysis in hereditary angioedema due to factor XII gene mutation Thr309Lys. Blood Coagul Fibrinolysis 20(5):325–332

    Article  CAS  Google Scholar 

  13. Björkqvist J, De Maat S, Lewandrowski U et al (2015) Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest 125(8):3132–3146

    Article  Google Scholar 

  14. de Maat S, Björkqvist J, Suffritti C et al (2016) Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations. J Allergy Clin Immunol 138(5):1414-1423.e9

    Article  Google Scholar 

  15. Ivanov I, Matafonov A, Sun MF et al (2019) A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood 133(10):1152–1163

    Article  CAS  Google Scholar 

  16. Pascreau T, Morena-Barrio ME, Lasne D et al (2019) Elevated thrombin generation in patients with congenital disorder of glycosylation and combined coagulation factor deficiencies. J Thromb Haemost 17(11):1798–1807

    Article  CAS  Google Scholar 

  17. Marcos C, López Lera A, Varela S et al (2012) Clinical, biochemical, and genetic characterization of type III hereditary angioedema in 13 Northwest Spanish families. Ann. Allergy, Asthma Immunol 109(3):195–200

  18. de la Morena-Barrio ME, Martínez-Martínez I, de Cos C et al (2016) Hypoglycosylation is a common finding in antithrombin deficiency in the absence of a SERPINC1 gene defect. J Thromb Haemost 14(8):1549–1560

    Article  Google Scholar 

  19. Teruel R, Martínez-Martínez I, Guerrero JA et al (2013) Control of post-translational modifications in antithrombin during murine post-natal development by miR-200a.  J Biomed Sci 16(1):20-29

  20. López-Gálvez R, de la Morena-Barrio ME, López-Lera A, Pathak M, Miñano A, Serrano M, Borgel D, Roldán V, Vicente V, Emsley J, Corral J (2020) Factor XII in PMM2-CDG patients: role of N-glycosylation in the secretion and function of the first element of the contact pathway. Orphanet J Rare Dis 15(1):280. https://doi.org/10.1186/s13023-020-01564-9 (PMID: 33036649)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haeuptle MA, Hennet T (2009) Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat 30(12):1628–1641

    Article  CAS  Google Scholar 

  22. Xiong HY, Alipanahi B, Lee LJ et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science (80-. ). 347(6218)

  23. Desmet FO, Hamroun D, Lalande M et al (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67. https://doi.org/10.1093/nar/gkp215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joseph K, Tuscano TB, Kaplan AP (2008) Studies of the mechanisms of bradykinin generation in hereditary angioedema plasma. Ann. Allergy, Asthma Immunol 101(3):279–286

  25. De Maat S, Hofman ZLM, Maas C (2018) Hereditary angioedema: the plasma contact system out of control. J Thromb Haemost 16(9):1674–1685

    Article  Google Scholar 

  26. Kaplan AP, Frank Austen K (1971) A prealbumin activator of prekallikrein: II. derivation of activators of prekallikrein from active hageman factor by digestion wittt plasmin. J. Exp. Med 133(4):696–712

  27. King SL, Joshi HJ, Schjoldager KT et al (2017) Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Adv 1(7):429–442

    Article  CAS  Google Scholar 

  28. de Maat S, Clark CC, Boertien M et al (2019) Factor XII truncation accelerates activation in solution. J Thromb Haemost 17(1):183–194

    Article  Google Scholar 

  29. Marchal I, Jarvis DL, Cacan R et al (2001) Glycoproteins from insect cells: sialylated or not? Biol Chem 382(2):151–159

    Article  CAS  Google Scholar 

  30. Jarvis DL, Finn EE (1995) Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212(2):500–511

    Article  CAS  Google Scholar 

  31. Tans G, Bouma BN, Büller HR et al (2003) Changes of hemostatic variables during oral contraceptive use. Semin Vasc Med 3(1):61–68

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the patients involved for giving consent and support to this study. We would like to make a special mention to the clinicians who provided the samples and clinical data: Drs. Alfredo Reparaz (Hospital Álvaro Cunqueiro, Vigo, Spain), Tania Liñares (Complejo Hospitalario de Pontevedra, Pontevedra, Spain), Celsa Pérez (Eoxi Pontevedra-O Salnés, Pontevedra, Spain), Susana Varela and María Ángeles Álvarez-Eire (Complejo Hospitalario Universitario de Ourense, Orense, Spain), María Ángeles Lara (Servicio Andaluz de Salud, Seville, Spain), and Pilar Iriarte (Complejo Hospitalario Universitario de Ferrol, A Coruña, Spain).

Funding

AL-L is supported by the Centre for Biomedical Network Research on Rare Diseases (CIBERER). This work was funded by grant (ER19P7AC7541)—ACCI18-04 from CIBERER and Complemento II-CM network (B2017/BMD3673).

Author information

Authors and Affiliations

Authors

Contributions

RL-G, MM-B and AL-L performed the experimental work. RL-G, MP and JE developed the expression system in insect cells. AL-L, MM-B and JC conceived the study and wrote the manuscript with support from JE and VV. AM, TC, CM and ML-T provided clinical data and sample management. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to M. E. de la Morena-Barrio or A. López-Lera.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent for Publication

All the authors have read the manuscript and approved it for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gálvez, R., de la Morena-Barrio, M.E., Miñano, A. et al. Thrombin in the Activation of the Fluid Contact Phase in Patients with Hereditary Angioedema Carrying the F12 P.Thr309Lys Variant. Clinic Rev Allerg Immunol 60, 357–368 (2021). https://doi.org/10.1007/s12016-021-08840-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08840-x

Keywords

Navigation