Skip to main content
Log in

Study of the nucleon-rich effect in 158Er and 185Os rare-earth nuclei using the projected shell model

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, the structure evolution in 158Er and185Os isotopes is calculated using the projected shell model (PSM) framework. The yrast spectrum, nucleon-rich effects, back-bending phenomenon, and the ratio of reduced electromagnetic transition probabilities, B(M1)/B(E2), are calculated in the spins ranges 8+–22+ and 17/2+–45/2+ for the mentioned isotopes, respectively. In the yrast spectrum, band crossing of one, two, and three quasi-particle bands at spins around 12+ and 41/2+, which is a sign of nucleon alignments, is investigated and 27 additional nucleons are found to be the reasons for back bending at lower spins in 158Er than 185Os, which is coincident with two great drops in the B(M1)/B(E2) ratio plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford, New York, 1990).

    Google Scholar 

  2. S.G. Nilsson, Math. Phys. Med. 16, 3 (1955)

    Google Scholar 

  3. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    Article  ADS  Google Scholar 

  4. Y. Sun, K. Hara, Comput. Phys. Commun. 104, 245 (1997)

    Article  ADS  Google Scholar 

  5. A. Ansari, S. Nair, Nucl. Phys. A 163, 56 (1971)

    Article  ADS  Google Scholar 

  6. N. Nica, Nucl. Data Sheets 141, 1 (2017)

    Article  ADS  Google Scholar 

  7. A. Faessler, M.T. Ploszajczak, Phys. Lett. B 76, 1 (1978)

    Article  ADS  Google Scholar 

  8. L. Lin, C. Chang, J. Phys. G Nucl. Phys. 7, L25 (1981)

    Article  ADS  Google Scholar 

  9. T. Bengtsson, Nucl. Phys. A 512, 124 (1990)

    Article  ADS  Google Scholar 

  10. M. Ploszajczak, A. Faessler, Nucl. Phys. A 379, 77 (1982)

    Article  ADS  Google Scholar 

  11. J.A. Sheikh, G.H. Bhat, Y. Sun, G.B. Vakil, R. Palit, Phys. Rev. C 77, 034313–034321 (2008)

    Article  ADS  Google Scholar 

  12. J. Simpson, M. Riley, J. Sharpey-Schafer, J. Bacelar, A. Cook, J. Cresswell, D. Elenkov, P. Forsyth, G. Hagemann, B. Herskind, Phys. G: Nucl. Part. Phys. 15, 643 (1989)

    Article  ADS  Google Scholar 

  13. M. Oshima, N. Johnson, F. McGowan, C. Baktash, I. Lee, Y. Schutz, R.V. Ribas, J.C. Wells, Phys. Rev. C 33, 1988 (1986)

    Article  ADS  Google Scholar 

  14. M.A. Riley, J. Simpson, E.S. Paul, Phys. Scr. 91, 123002 (2016)

    Article  ADS  Google Scholar 

  15. M. Shahriarie, S. Mohammadi, Z. Firouzi, J. Korean Phys. Soc. 76, 8 (2020)

    Article  ADS  Google Scholar 

  16. M.R. Gunye, A. Kumar, Pramana 14, 223 (1980)

    Article  ADS  Google Scholar 

  17. T. Shizuma, S. Mitarai, G. Sletten, R.A. Bark, N.L. Gjrup, H.J. Jensen, M. Piiparinen, J. Wrzesinski, Y.R. Shimizu, Phys. Rev. C 69, 024305 (2004)

    Article  ADS  Google Scholar 

  18. C.Y. Wu, D. Cline, A.B. Hayes, M.W. Simon, Phys. Rev. C 64, 014307 (2001)

    Article  ADS  Google Scholar 

  19. S. Mohammadi, Z. Poldolak, G. De Angelis, M. Axiotis, D. Bazzacco, P.G. Bizzeti, F. Brandolini, R. Broda, D. Bucurescu, E. Franea, W. Gelletly, A. Gadea, M. Ionescu-Bujor, A. Iordachescu, T.H. Kroll, S. Longdown, S. Lunardi, N. Marginean, T. Martinez, N.H. Medina, B. Quintana, P.H. Regan, B. Rubio, C.A. Ur, J.-J. Valiente Dobon, P.M. Walker, Y.H. Zhang, Braz. J. Phys. 34, 792 (2004)

    Article  ADS  Google Scholar 

  20. S. Mohammadi, Z. Poldolak, Iran. J. Sci. Thec. 31, 1 (2007)

    Google Scholar 

  21. A.R. Binesh, S. Mohammadi, Res. J. Phys. 3, 32 (2009)

    Article  Google Scholar 

  22. S. Mohammadi, Iran. J. Sci. Thec. 34, 13 (2010)

    Google Scholar 

  23. J.A. Sheikh, Y. Sun, P.M. Walker, Phys. Rev. C 57, R26 (1998)

    Article  ADS  Google Scholar 

  24. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016)

    Article  ADS  Google Scholar 

  26. A. Bohr, B.R. Mottelson, Nuclear Structure, Sec 3, vol. I (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  27. B. Castel, I.S. Towner, Modern Theories of Nuclear Moments, Sec and 4 (Clarendon Press, Oxford, 1990).

    Google Scholar 

  28. B. Alex, Lecture Notes in Nuclear Structure Physics, Sec 4 (National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Haghpeima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moonesi, M., Haghpeima, A. & Shahriari, M. Study of the nucleon-rich effect in 158Er and 185Os rare-earth nuclei using the projected shell model. J. Korean Phys. Soc. 78, 651–656 (2021). https://doi.org/10.1007/s40042-021-00127-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00127-w

Keywords

Navigation