Skip to main content
Log in

Superconvergence of the Local Discontinuous Galerkin Method for One Dimensional Nonlinear Convection-Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study superconvergence properties of the local discontinuous Galerkin (LDG) methods for solving nonlinear convection-diffusion equations in one space dimension. The main technicality is an elaborate estimate to terms involving projection errors. By introducing a new projection and constructing some correction functions, we prove the \((2k+1)\)th order superconvergence for the cell averages and the numerical flux in the discrete \(L^2\) norm with polynomials of degree \(k\ge 1\), no matter whether the flow direction \(f'(u)\) changes or not. Superconvergence of order \(k +2\) (\(k +1\)) is obtained for the LDG error (its derivative) at interior right (left) Radau points, and the convergence order for the error derivative at Radau points can be improved to \(k+2\) when the direction of the flow doesn’t change. Finally, a supercloseness result of order \(k+2\) towards a special Gauss–Radau projection of the exact solution is shown. The superconvergence analysis can be extended to the generalized numerical fluxes and the mixed boundary conditions. All theoretical findings are confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    Book  Google Scholar 

  2. Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72(2), 761–791 (2017). https://doi.org/10.1007/s10915-017-0377-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, W., Li, D., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math. Model. Numer. Anal. 51(2), 467–486 (2017). https://doi.org/10.1051/m2an/2016026

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, W., Shu, C.W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56(2), 732–765 (2018). https://doi.org/10.1137/17M1128605

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, W., Shu, C.W., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM Math. Model. Numer. Anal. 51(6), 2213–2235 (2017). https://doi.org/10.1051/m2an/2017026

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W., Zhang, Z.: Superconvergence of local discontinuous Galerkin methods for one-dimensional linear parabolic equations. Math. Comp. 85(297), 63–84 (2016). https://doi.org/10.1090/mcom/2975

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52(5), 2555–2573 (2014). https://doi.org/10.1137/130946873

    Article  MathSciNet  MATH  Google Scholar 

  8. Castillo, P.: A superconvergence result for discontinuous Galerkin methods applied to elliptic problems. Comput. Methods Appl. Mech. Eng. 192(41–42), 4675–4685 (2003). https://doi.org/10.1016/S0045-7825(03)00445-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Castillo, P., Gómez, S.: On the conservation of fractional nonlinear Schrödinger equation’s invariants by the local discontinuous Galerkin method. J. Sci. Comput. 77(3), 1444–1467 (2018). https://doi.org/10.1007/s10915-018-0708-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math. Comp. 76(257), 67–96 (2007). https://doi.org/10.1090/S0025-5718-06-01895-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comp. 86(305), 1233–1267 (2017). https://doi.org/10.1090/mcom/3141

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, Y., Shu, C.W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47(6), 4044–4072 (2010). https://doi.org/10.1137/090747701

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, Y., Zhang, F., Zhang, Q.: Local analysis of local discontinuous Galerkin method for the time-dependent singularly perturbed problem. J. Sci. Comput. 63(2), 452–477 (2015). https://doi.org/10.1007/s10915-014-9901-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comp. 78(265), 1–24 (2009). https://doi.org/10.1090/S0025-5718-08-02146-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Kanschat, G., Schotzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comp. 74(251), 1067–1095 (2005). https://doi.org/10.1090/S0025-5718-04-01718-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Luskin, M., Shu, C.W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comp. 72(242), 577–606 (2003). https://doi.org/10.1090/S0025-5718-02-01464-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). https://doi.org/10.1137/S0036142997316712

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, W., Zhong, X., Qiu, J.M.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235, 458–485 (2013). https://doi.org/10.1016/j.jcp.2012.10.020

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji, L., Xu, Y., Ryan, J.K.: Accuracy-enhancement of discontinuous Galerkin solutions for convection-diffusion equations in multiple-dimensions. Math. Comp. 81(280), 1929–1950 (2012). https://doi.org/10.1090/S0025-5718-2012-02586-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Meng, X., Ryan, J.K.: Divided difference estimates and accuracy enhancement of discontinuous Galerkin methods for nonlinear symmetric systems of hyperbolic conservation laws. IMA J. Numer. Anal. 38(1), 125–155 (2018). https://doi.org/10.1093/imanum/drw072

    Article  MathSciNet  MATH  Google Scholar 

  21. Meng, X., Shu, C.W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comp. 85(299), 1225–1261 (2016). https://doi.org/10.1090/mcom/3022

    Article  MathSciNet  MATH  Google Scholar 

  22. Meng, X., Shu, C.W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50(5), 2336–2356 (2012). https://doi.org/10.1137/110857635

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Y., Shu, C.W.: Analysis of sharp superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33(3), 323–340 (2015). https://doi.org/10.4208/jcm.1502-m2014-0001

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q., Shu, C.W.: Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(3), 1038–1063 (2010). https://doi.org/10.1137/090771363

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Meng.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Grant No. 11971132, 11971131, U1637208), the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2020081) and the National Key Research and Guangdong Basic and Applied Basic Research Foundation (2020B1515310006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, D., Meng, X. et al. Superconvergence of the Local Discontinuous Galerkin Method for One Dimensional Nonlinear Convection-Diffusion Equations. J Sci Comput 87, 39 (2021). https://doi.org/10.1007/s10915-021-01446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01446-7

Keywords

Mathematics Subject Classification

Navigation