Skip to main content
Log in

Bounds for the Tracking Error of First-Order Online Optimization Methods

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper investigates online algorithms for smooth time-varying optimization problems, focusing first on methods with constant step-size, momentum, and extrapolation-length. Assuming strong convexity, precise results for the tracking iterate error (the limit supremum of the norm of the difference between the optimal solution and the iterates) for online gradient descent are derived. The paper then considers a general first-order framework, where a universal lower bound on the tracking iterate error is established. Furthermore, a method using “long-steps” is proposed and shown to achieve the lower bound up to a fixed constant. This method is then compared with online gradient descent for specific examples. Finally, the paper analyzes the effect of regularization when the cost is not strongly convex. With regularization, it is possible to achieve a non-regret bound. The paper ends by testing the accelerated and regularized methods on synthetic time-varying least-squares and logistic regression problems, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen-Zhu, Z., Hazan, E.: Optimal black-box reductions between optimization objectives (2016). [Online] Available at: arXiv:1603.05642

  2. Allen-Zhu, Z., Orecchia, L.: Linear coupling: An ultimate unification of gradient and mirror descent. In: Proceedings of the 8th Innovations in Theoretical Computer Science, ITCS ’17 (2017). Full version available at arXiv:1407.1537

  3. Arjevani, Y., Shalev-Shwartz, S., Shamir, O.: On lower and upper bounds in smooth and strongly convex optimization. J. Mach. Learn. Res. 17(1), 4303–4353 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Aujol, J., Dossal, C.: Stability of over-relaxations for the forward-backward algorithm, application to fista. SIAM J. Optim. 25(4), 2408–2433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aybat, N., Fallah, A., Gürbüzbalaban, M., Ozdaglar, A.: Robust accelerated gradient methods for smooth strongly convex functions. SIAM J. Optim. 30, 717–751 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer-Verlag, New York (2017)

    Book  MATH  Google Scholar 

  7. Beck, A.: First-Order Methods in Optimization. MOS-SIAM Series on Optimization (2017)

  8. Bernstein, A., Dall’Anese, E., Simonetto, A.: Online primal-dual methods with measurement feedback for time-varying convex optimization. IEEE Trans. Signal Process. 67(8), 1978–1991 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsekas, D., Tsitsiklis, J.: Gradient convergence in gradient methods with errors. SIAM J. Optim. 10(3), 627–642 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Besbes, O., Gur, Y., Zeevi, A.: Non-stationary stochastic optimization. Oper. Res. 63(5), 1227–1244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bianchin, G., Pasqualetti, F.: A network optimization framework for the analysis and control of traffic dynamics and intersection signaling. In: IEEE Conference on Decision and Control, pp. 1017–1022. IEEE (2018)

  12. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  13. Bubeck, S.: Convex Optimization: Algorithms and Complexity. In: Foundations and Trends in Machine Learning, (2015)

  14. Chen, J., Lau, V.K.N.: Convergence analysis of saddle point problems in time varying wireless systems: Control theoretical approach. IEEE Trans. Signal Process. 60(1), 443–452 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cyrus, S., Hu, B., Scoy, B.V., Lessard, L.: A robust accelerated optimization algorithm for strongly convex functions. In: IEEE Annual American Control Conference, pp. 1376–1381 (2018)

  16. Dall’Anese, E., Simonetto, A., Becker, S., Madden, L.: Optimization and learning with information streams: Time-varying algorithms and applications. IEEE Signal Processing Magazine (2020). To appear; see arXiv preprint arXiv:1910.08123

  17. Dall’Anese, E., Simonetto, A.: Optimal power flow pursuit. IEEE Trans. Smart Grid 9, 942–952 (2018)

    Article  Google Scholar 

  18. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inexact oracle. Math. Program. 146, 37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dixit, R., Bedi, A.S., Tripathi, R., Rajawat, K.: Online learning with inexact proximal online gradient descent algorithms. IEEE Trans. Signal Process. 67(5), 1338–1352 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Drori, Y., Teboulle, M.: Performance of first-order methods for smooth convex minimization: a novel approach. Math. Program. 145, 541 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Hall, E.C., Willett, R.M.: Online convex optimization in dynamic environments. IEEE J. Select. Top. Signal Process. 9(4), 647–662 (2015)

    Article  Google Scholar 

  22. Hazan, E., Agarwal, A., Kale, S.: Logarithmic regret algorithms for online convex optimization. Mach. Learn. 69(2), 169–192 (2007)

    Article  MATH  Google Scholar 

  23. Jadbabaie, A., Rakhlin, A., Shahrampour, S., Sridharan, K.: Online optimization: competing with dynamic comparators. PMLR 38, 398–406 (2015)

    Google Scholar 

  24. Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. In: Machine Learning and Knowledge Discovery in Database - European Conference, pp. 795–811 (2016)

  25. Kim, D., Fessler, J.: Optimized first-order methods for smooth convex minimization. Math. Program. 159, 81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Koshal, J., Nedic, A., Shanbhag, U.: Multiuser optimization: distributed algorithms and error analysis. SIAM J. Optim. (2011). https://doi.org/10.1137/090770102

  27. Lessard, L., Recht, B., Packard, A.: Analysis and design of optimization algorithms via integral quadratic constraints. SIAM J. Optim. 26, 57–95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Madden, L., Becker, S., Dall’Anese, E.: Online sparse subspace clustering. In: IEEE Data Science Workshop (2019)

  29. Mokhtari, A., Shahrampour, S., Jadbabaie, A., Ribeiro, A.: Online optimization in dynamic environments: Improved regret rates for strongly convex problems. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7195–7201 (2016)

  30. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, Hoboken (1983)

    Google Scholar 

  31. Nesterov, Y.: A method for solving the convex programming problem with convergence rate o(1/k2) (1983)

  32. Nesterov, Y.: Lectures on Convex Optimization, Springer Optimization and Its Applications, vol. 137, 2 edn. Springer, Switzerland (2018)

  33. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, Applied Optimization, vol. 87. Kluwer, Boston (2004)

    Book  MATH  Google Scholar 

  34. Nocedal, J., Wright, S.: Numerical Optimization. Operations Research and Financial Engineering, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  35. O’Donoghue, B., Candes, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math. 53, 715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Polyak, B.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4, 1–17 (1964)

    Article  Google Scholar 

  37. Popkov, A.Y.: Gradient methods for nonstationary unconstrained optimization problems. Autom. Remote Control 66(6), 883–891 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rockafeller, R.: Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97 (1976)

    Article  MathSciNet  Google Scholar 

  39. Ryu, E., Boyd, S.: A primer on monotone operator methods. Appl. Comput. Math. 15(1), 3–43 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Schmidt, M., Roux, N., Bach, F.: Convergence rates of inexact proximal-gradient methods for convex optimization. In: Advances in neural information processing systems, pp. 1458–1466 (2011)

  41. Shalev-Shwartz, S.: Online Learning and Online Convex Optimization. Found. Trends Mach. Learn. 4, 107 (2012)

    Article  MATH  Google Scholar 

  42. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory to algorithms. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  43. Simonetto, A., Leus, G.: Double smoothing for time-varying distributed multiuser optimization. In: IEEE Glob. Conf. Signal Inf. Process. (2014)

  44. Simonetto, A.: Time-varying convex optimization via time-varying averaged operators (2017). [Online] Available at: arXiv:1704.07338

  45. Tang, Y., Dvijotham, K., Low, S.: Real-time optimal power flow. IEEE Trans. Smart Grid 8, 2963–2973 (2017)

    Article  Google Scholar 

  46. Taylor, A., Hendrickx, J., Glineur, F.: Smooth strongly convex interpolation and exact worst-case performance of first-order methods. Math. Program. 161, 307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tseng, P.: Approximation accuracy, gradient methods, and error bounds for structured convex optimization. Math. Program. 125, 263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward-backward algorithms. SIAM J. Optim. 23(3), 1607–1633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, T., Zhang, L., Jin, R., Yi, J.: Tracking slowly moving clairvoyant: Optimal dynamic regret of online learning with true and noisy gradient. In: International Conference on Machine Learning (2016)

  50. Yang, T.: Accelerated gradient descent and variational regret bounds (2016)

Download references

Acknowledgements

All three authors gratefully acknowledge support from the NSF program “AMPS-Algorithms for Modern Power Systems” under Award # 1923298.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Madden.

Additional information

Communicated by Jérôme Bolte.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madden, L., Becker, S. & Dall’Anese, E. Bounds for the Tracking Error of First-Order Online Optimization Methods. J Optim Theory Appl 189, 437–457 (2021). https://doi.org/10.1007/s10957-021-01836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01836-9

Keywords

Navigation