Skip to main content
Log in

Energy Partitions of Seismic Waves in Interfaces: Numerical Results

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The energy propagated by a seismic event has been of great interest to the community of geophysics and seismologists. In recent times, several studies have been published with the purpose of showing the contributions of each type of seismic wave to the total energy propagated. In this context, diffuse field theory, Green functions and motion correlations have been used to determine energy contributions or partitions based on the type of propagated seismic waves or the degrees of freedom of the medium. In this work, we implement the boundary element method to derive seismic wave energy partitions in interfaces (vacuum–solid, fluid–solid and solid–solid). Theoretical results for two-dimensional infinite spaces show that for a Poisson solid, the energy partitions are 25% for P waves and 75% for SV waves; our results are coincident with such values. However, for interfaces, energy partitions are strongly dependent on the propagation velocities and Poisson's ratio of the media they join. For the case of a vacuum–solid half-space, our results are coincident with those already published and whose energy amplification reaches a value of 2.0 for a Poisson solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code Availability

Custom code. The formulation is programmed in FORTRAN code.

References

  • Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 74(2), 615–631.

    Article  Google Scholar 

  • Aki, K., & Richards, P. G. (2002). Quantitative Seismology University. Science Books, pp 11–34.

  • Alielahi, H., Kamalian, M., & Adampira, M. (2015). Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM. Soil Dynamics and Earthquake Engineering, 71, 63–79.

    Article  Google Scholar 

  • Ávila-Carrera, R., Rodríguez-Castellanos, A., Valle-Molina, C., Sánchez-Sesma, F. J., Luzón, F., & González-Flores, E. (2016). Numerical simulation of multiple scattering of P and SV waves caused by near-surface parallel cracks. Geofísica Internacional, 55(4), 275–291.

    Article  Google Scholar 

  • Ávila-Carrera, R., Sánchez-Sesma, F. J., & Rodríguez-Castellanos, A. (2020). The influence of relative source-receiver positions on the recovery of P- and S-waves and energy contributions by GFSNC-binary-operator. Soil Dynamics and Earthquake Engineering, 129, 105934.

    Article  Google Scholar 

  • Borejko, P. (2006). A new benchmark solution for the problem of water-covered geophysical bottom. In Proceedings of the International Symposium on Mechanical Waves in Solids, Zhejiang University, Hangzhou, China.

  • Bowles, J. E. (1997). Foundation analysis and design (4th ed.). New York: McGraw Hill.

    Google Scholar 

  • Campillo, M., & Paul, A. (2003). Long range correlations in the seismic coda. Science, 299, 547–549.

    Article  Google Scholar 

  • Carbajal-Romero, M., Ernesto Pineda-León, E., Ávila-Carrera, R., Rodríguez-Sánchez, J. E., Rodríguez-Castellanos, A., & Sánchez-Sesma, F. J. (2017). Correlations of seismic motions and energy distributions: numerical results. Journal of Geophysics and Engineering, 14, 1544–1556.

    Article  Google Scholar 

  • Carcione, J. M. (2007). Wave Fields in real media. In K. Helbig & S. Treitel (Eds.), Handbook of Geophysical exploration, seismic exploration. Elsevier.

  • Lee, Y. (1960). Statistical theory of communication. New York: Wiley.

    Google Scholar 

  • Perton, M., Sánchez-Sesma, F. J., Rodríguez-Castellanos, A., Campillo, M., & Weaver, R. L. (2009). Two perspectives on equipartition in diffuse elastic fields in three dimensions. Journal of the Acoustical Society of America, 126(3), 1125–1130.

    Article  Google Scholar 

  • Reinoso, E. (1996). Two and three dimensional scattering from topographical structures and alluvial valleys and comparisons with accelerometric data: the case of Mexico City Eleventh World Conf. on Earthquake Engineering paper no. 1643. New York: Elsevier.

    Google Scholar 

  • Rodríguez-Castellanos, A., Luzón, F., & Sánchez-Sesma, F. J. (2005). Diffraction of seismic waves in an elastic cracked half-plane using a boundary integral formulation. Soil Dynamics and Earthquake Engineering, 25, 827–837.

    Article  Google Scholar 

  • Rodríguez-Castellanos, A., Martínez-Calzada, V., Rodríguez-Sánchez, J. E., Orozco-del-Castillo, M. G., & Carbajal-Romero, M. (2014). Induced water pressure profiles due to seismic motions. Applied Ocean Research, 47, 9–16.

    Article  Google Scholar 

  • Rodríguez-Castellanos, A., Sánchez-Sesma, F. J., Luzón, F., & Martin, R. (2006). Multiple scattering of elastic waves by subsurface fractures and cavities. Bulletin of the Seismological Society of America, 96(4A), 1359–1374.

    Article  Google Scholar 

  • Ryzhik, L. V., Papanicolau, G. C., & Keller, J. B. (1996). Transport equations for elastic and other waves in random media. Wave Motion, 24, 327–370.

    Article  Google Scholar 

  • Sánchez-Sesma, F. J., & Campillo, M. (1991). Diffraction of P, SV and Rayleigh waves by topographic features; a boundary integral formulation. Bulletin of the Seismological Society of America., 81, 1–20.

    Google Scholar 

  • Sánchez-Sesma, F. J., Pérez-Ruiz, J. A., Luzón, F., Campillo, M., & Rodríguez-Castellanos, A. (2008). Diffuse fields in dynamic elasticity. Wave Motion, 45, 641–654.

    Article  Google Scholar 

  • Sánchez-Sesma, F. J., Victoria-Tobon, E., Carbajal-Romero, M., Rodríguez-Sánchez, J. E., & Rodríguez-Castellanos, A. (2018). Energy equipartition in theoretical and recovered seismograms. Journal of Applied Geophysics, 150, 153–159.

    Article  Google Scholar 

  • Sato, H., & Fehler, M. (1998). Wave propagation and scattering in the heterogeneous earth. New York: Springer-Verlag.

    Book  Google Scholar 

  • Sens-Schönfelder, C., Snieder, R., & Stähler, S. C. (2015). The lack of equipartitioning in global body wave coda. Geophysical Research Letters, 42, 7483–7489.

    Article  Google Scholar 

  • Van Manen, D. J., Curtis, A., & Robertsson, J. O. A. (2006). Interferometric modeling of wave propagation in inhomogeneous elastic media using time-reversal and reciprocity. Geophysics, 71, S147–S160.

    Article  Google Scholar 

  • Wade, R. (1996). Practical foundation engineering handbook. New York: McGraw Hill.

    Google Scholar 

  • Wapenaar, K. (2004). Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters, 93(254301), 1–4.

    Google Scholar 

  • Weaver, R. L. (1982). On diffuse waves in solid media. Journal of the Acoustical Society of America, 71, 1608–1609.

    Article  Google Scholar 

  • Weaver, R. L. (1985). Diffuse elastic waves at the free surface. Journal of the Acoustical Society of America, 78(1), 131–136.

    Article  Google Scholar 

  • Weaver, R. L. (1990). Diffusivity of ultrasound in polycrystals. Journal of the Mechanics and Physics of Solids, 38, 55–86.

    Article  Google Scholar 

  • Weaver, R. L., & Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function. Journal of the Acoustical Society of America, 116, 2731–2734.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research paper, conception, design and discussions. Writing the article [AR and MC], programing [AR, MC and FLS], obtaining figures [VM], discussions of figures [AR, MC, VM, FLS], conclusions and review of the paper [AR, MC, VM, FLS].

Corresponding author

Correspondence to Víctor Martínez-Calzada.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Deceased: Alejandro Rodríguez-Castellanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Castellanos, A., Carbajal-Romero, M., Martínez-Calzada, V. et al. Energy Partitions of Seismic Waves in Interfaces: Numerical Results. Pure Appl. Geophys. 178, 865–876 (2021). https://doi.org/10.1007/s00024-021-02659-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02659-5

Keywords

Navigation