Skip to main content
Log in

The antimicrobial peptide AsR416 can inhibit the growth, sclerotium formation and virulence of Rhizoctonia solani AG1-IA

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plant antimicrobial peptides (AMPs) as a part of plant defense responses, are small soluble defense molecules which can inhibit the growth of pathogens. This study evaluates the effect of an antimicrobial peptide obtained from Allium sativum (AsR416) on Rhizoctonia solani (AG1-IA) the causal agent of rice sheath blight, in vitro and in vivo conditions. Firstly, the obtained results revealed that AsR416 (100 mg ml−1) inhibited the growth and sclerotia production of R. solani AG1-IA. Furthermore, these results showed the mode of action and mechanisms of AsR416 effect in inhibiting sclerotia formation of R. solani AG1-IA via metabolomics tools. AsR416 decreased the biomass of R. solani AG1-IA in liquid culture. In addition, nitro blue tetrazolium and evans blue staining methods revealed that the antimicrobial peptide induced O2 formation in the hyphal cells and mycelia cell death of R. solani AG1-IA, respectively. AsR416 delayed the pathogen infection process and decreased the severity of rice sheath blight disease in vitro and in vivo conditions. AsR416 reduced activity of cellulase, which is one of the virulence factors of this pathogen. The number of sclerotia decreased on plants treated with AsR416 after 2 months compared with the control. Considering the need to reduce application of hazardous synthetic fungicides against pathogenic fungi, using AMPs could be a successful method to increase rice production and reduce the use of chemical fungicides against sheath blight disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarbiou, J., Tjabringa, G. S., Verhoosel, R. M., Ninaber, D. K., White, S. R., Peltenburg, L. T. C., & Hiemstra, P. S. (2006). Mechanisms of cell death induced by the neutrophil antimicrobial peptides a-defensins and LL-37. Inflammation Research, 55(3), 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Abd-El-Khair, H., & El-Gamal Nadia, G. (2011). Effect of aqueous extracts of some plant species against Fusarium solani and Rhizoctonia solani in Phaseolus vulgaris plants. Archives Phytopathology Plant Protection, 44, 1–16.

    Article  Google Scholar 

  • Aerts, A. M., Carmona-Gutierrez, D., Lefevre, S., Govaert, G., Francois, I. E., Madeo, F., Santos, R., Cammue, B. P., & Thevissen, K. (2009). The antifungal plant defensing RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Letters, 583(15), 2513–2516.

    Article  CAS  PubMed  Google Scholar 

  • Aliferis, K. A., & Jabaji, S. (2010). 1H NMR and GC-MS metabolic fingerprinting of developmental stage of Rhizoctonia solani sclerotia. Metabolomics, 6, 96–108.

    Article  CAS  Google Scholar 

  • Andreu, D., & Rivas, L. (1998). Animal antimicrobial peptides: An overview. Biopolymers, 47, 415–433.

    Article  CAS  PubMed  Google Scholar 

  • Baehner, R. L., Boxer, L. A., & Davis, J. (1976). The biochemical basis of nitroblue Tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood, 48(2), 303–313.

    Article  Google Scholar 

  • Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., De Samblanx, G. W., & Osborn, R. W. (1997). Antimicrobial peptides from plants. Critical Reviews in Plant Science, 16(3), 297–323.

    Article  CAS  Google Scholar 

  • Broekaert, W. F., Marien, W., Terras, F. R., De Bolle, M. F., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S. B., Vanderleyden, J., & Cammue, B. P. A. (1992). Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry, 31, 4308–4314.

    Article  CAS  PubMed  Google Scholar 

  • Bulet, P., Stocklin, R., & Menin, L. (2004). Antimicrobial peptides: From invertebrates to vertebrates. Immunological Reviews, 198, 169–184.

    Article  CAS  PubMed  Google Scholar 

  • Cammue, B. P. A., Debolle, M. F. C., Terras, F. R. G., Proost, P., Vandamme, J., Rees, S. B., Vanderleyden, J., & Broekaert, W. F. (1992). Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis Jalapa L. seeds. The Journal of Biological Chemistry, 267, 2228–2233.

    Article  CAS  PubMed  Google Scholar 

  • Cammue, B. P. A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I. J., Proost, P., Damme, J. V., Osborn, R. W., Guerbette, F., Kader, J. C., & Broekaerrt, W. F. (1995). A potent antimicrobial protein from onion seeds showing sequence homology to plant liquid transfer proteins. Plant Physiology, 109, 445–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candido, E. S., Pinto, M. F., Pelegrini, P. B., Lima, T. B., Silva, O. N., Pogue, R., Grossi-Des-Sa, M. F., & Franco, O. L. (2011). Plant storage proteins with antimicrobial activity: Novel insights into plant defense mechanisms. FASEB Journal, 25(10), 3290–3305.

    Article  CAS  Google Scholar 

  • Carling, D. E., Kuninaga, S., & Brainard, K. A. (2002). Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology, 92, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3, 1–30.

    Article  CAS  PubMed  Google Scholar 

  • Chet, I., Henis, Y., & Mitchell, R. (1966). The morphogenetic effect of Sulphur- containing amino acids, glutathione and iodoacetic acid on Sclerotium rolfsii. Journal of General Microbiology, 45, 541–546.

    Article  CAS  Google Scholar 

  • Cho, J., Hwang, I. S., Choi, H., Hwang, J. H., Hwang, J. S., & Lee, D. G. (2012). The novel biological action of antimicrobial peptides via apoptosis induction. Journal of Microbiology and Biotechnology, 22(11), 1457–1466.

    Article  CAS  PubMed  Google Scholar 

  • Ciampi, M. B., Meyer, M. C., Costa, M. J. N., Zala, M., Macdonald, B. A., & Ceresini, P. C. (2008). Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil. Phytopathology, 98(8), 932–941.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, R. C. (1969). Changes in soluble carbohydrates during sclerotium formation by Sclerotinia sclerotiorum and Sclerotinia trifoliorum. Transactions of the British Mycological Society, 58, 77–86.

    Article  Google Scholar 

  • Cooter, P. D., Hill, C., & Ross, P. (2005). Bacterial lantibiotics: Strategies to improve therapeutic potential. Current Protein and Peptide Science, 6, 61–75.

    Article  Google Scholar 

  • Craik, D. J., Clark, R. J., & Daly, N. L. (2007). Potential therapeutic applications of the cyclotides and related cysteine knot mini-proteins. Expert OpinInvestig Drugs, 16(5), 595–604.

    Article  CAS  Google Scholar 

  • Datta, A., Ghosh, A., Airoldi, C., Sperandeo, P., Mroue, K. H., Jimenez-Barbero, J., Kundu, P., Ramamoorthy, A., & Bhunia, A. (2015). Antimicrobial peptides: Insights into membrane Permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Scientific Reports, 5, 11951.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Lucca, A. J., Jacks, T. J., & Broekaert, W. J. (1998). Fungicidal and binding properties of three plant peptides. Mycopathologia, 144(2), 87–91.

    Article  PubMed  Google Scholar 

  • Degenkolb, T., Berg, A., Gams, W., Schlegel, B., & Grafe, U. (2003). The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrophotometric identification via diagnostic fragment ions. Journal of Peptide Science, 9, 666–678.

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim-Nesbat, F., Boh, S., Heitefuss, R., & Apel, K. (1993). Thionin in cell walls and papillae of barley in compatible and incompatible interactions with Erysiphe graminis f. sp. Hordei. Physiological and Molecular Plant Pathology, 43(5), 343–352.

    Article  CAS  Google Scholar 

  • Egorov, T. A., Odintsova, T. I., Pukhalsky, V. A., & Grishin, E. V. (2005). Diversity of wheat anti-microbial peptides. Peptides, 26(11), 2064–2073.

    Article  CAS  PubMed  Google Scholar 

  • Ferre, R., Badosa, E., Feliu, L., Planas, M., Montesinos, E., & Bardai, E. (2006). Inhibition of plant-pathogenic bacteria by short synthetic cercropin A-melittin hybrid peptides. Applied and Environmental Microbiology, 72(5), 3302–3308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, G. H., Liu, W., Dai, J. X., Wang, J. F., Hu, Z., Zhang, Y., & Wang, D. C. (2001). Solution structure of PAFP-s: A new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biocchemistry, 40(37), 10973–10978.

    Article  CAS  Google Scholar 

  • Ghose, T. K. (1987). Measurement of cellulose activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  • Granade, T. C., Heeann, M. F., & Artis, W. M. (1985). Monitoring of filamentous fungal growth by in situ microspectrophotometry, fragmented mycelium absorbance density and 14C incorporation: Alternative to mycelial dry weight. Applied and Environmental Microbiology, 49(1), 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groth, D. E. (2008). Effects of cultivar resistance and single fungicide application on rice sheath blight, yield and qual-ity. Crop Protection, 27, 1125–1130.

    Article  CAS  Google Scholar 

  • Hadacek, F., & Greger, H. (2000). Testing of antifungal natural products: Methodologies, comparability of results and assay choice. Phytochemical Analysis, 11, 137–174.

    Article  CAS  Google Scholar 

  • Hamlyn, P. F., Bradshaw, R. E., Mellon, F. M., Santiago, C. M., Wilson, J. M., & Peberdy, J. F. (1981). Efficient protoplast isolation from fungi using commercial enzymes. Enzyme and Microbial Technology, 3, 321–325.

    Article  CAS  Google Scholar 

  • Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010). Biosynthesis of pectin. Plant Physiology, 153, 384–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausner, G., & Reid, J. (1999). Factors influencing the production of sclerotia in the wild rice (Zizania aquatica) pathogen Sclerotium hydrophilum. Mycoscience, 40, 393–400.

    Article  CAS  Google Scholar 

  • Hayes, B. M., Bleackley, M. R., Wiltshire, J. L., Anderson, M. A., Traven, A., & Van DerWeerden, N. L. (2013). Identification and mechanism of action of the plant defensing NaD1 as a new member of antifungal drug arsenal against Candida albicans. Antimicrobial Agents and Chemotherapy, 57, 3667–3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henis, Y., Okon, Y., & Chet, I. (1973). The relationship between early hyphal branching and formation of sclerotia in Sclerotium rolfsii. Journal of General Microbiology, 79, 147–150.

    Article  Google Scholar 

  • Islam, W., Tayyab, M., Khalil, F., Hua, Z., Huang, Z., & Chen, H. Y. H. (2020). Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 168, 104641.

    Article  CAS  PubMed  Google Scholar 

  • Jack, R. W., & Jung, G. (2000). Lantibiotics and microcins: Polypeptides with unusual chemical diversity. Current Opinion in Chemical Biology, 4, 310–317.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, C., West, J., Waine, C., Craik, D., & Anderson, M. (2001). Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. PNAS, 98(19), 10614–10619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kritzman, G., Okon, Y., Chet, I., & Henis, Y. (1976). Metabolism of L-threonine and its relationship to sclerotium formation in Sclerotium rolfsii. Journal of General Microbiology, 95, 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Lai, F. M., DeLong, C., Mei, K., Wignes, T., & Fobert, P. R. (2002). Analysis of the DRR230 family of pea defensins: Gene expression pattern and evidence of broad host-range antifungal activity. Plant Science, 163, 855–864.

    Article  CAS  Google Scholar 

  • Lay, F. T., & Anderson, M. A. (2005). Defensins- components of the innate immune system in plants. Current Protein and Peptide Science, 6, 85–101.

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro, B. P., Zasloff, M., & Rolff, J. (2020). Antimicrobial peptides: Application informed by evolution. Science, (6490), 368, eaau5480.

  • Liu, M. F., & Wu, L. C. (1971). The effect of amino acids on the growth and morphogenesis of Sclerotium rolfsii. Plant Protection Bulletin, Taiwan, 13, 87–96.

    Google Scholar 

  • Lopez-Garcia, B., Segundo, B. S., Coca, M. (2012). Antimicrobial peptides as a promising alternative for plant disease protection. In: Peptides for disease control. American ChemicalSociety, Washington DC.

  • MacMillan, J. D., & Voughin, R. H. (1964). Purification and properties of polyglacturonic acid- transeliminase produced by Clastridium multiformentans. Biochemistry, 3, 564–572.

    Article  CAS  PubMed  Google Scholar 

  • Madeo, F., Frohlich, E., & Frohlich, K. U. (1997). A yeast mutant showing diagnostic markers of early and late apoptosis. The Journal of Cell Biology, 139(3), 729–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maly, F. F., Nakamura, M., Gauchat, J. F., Urwyler, A., Walker, C., Dahinden, C. A., Cross, A. R., Jones, O. T., & de Weck, A. L. (1989). Superoxide- dependent nitroblue tetrazolium reduction and expression of cytochrome b- 245 component by human tonsillar B lymphocytes and B cell line. The Journal of Immunology, 142(4), 1260–1267.

    Article  CAS  PubMed  Google Scholar 

  • McManus, A. M., Nielsen, K. J., Marcus, J. P., Harrison, S. J., Green, J. L., Manners, J. M., & Craik, D. J. (1999). MiAMP1, a novel protein from Macadamia integrifolia adopts a greek key beta-barrel fold unique amongst plant antimicrobial protein. Journal of Molecular Biology, 293, 629–638.

    Article  CAS  PubMed  Google Scholar 

  • Meena, M., Prasad, V., Zehra, A., Gupta, V. K., & Upadhyay, R. S. (2015). Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Frontiers in Microbiology, 6, 1–12.

    Article  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Money, N. P. (2016). Fungal cell biology and development. In: The fungi. Elsevier 37–66.

  • Montesinos, E. (2007). Antimicrobial peptides and plant disease control. FEMS Microbial Letter, 270, 1–11.

    Article  CAS  Google Scholar 

  • Moromizato, Z., Ishizaki, F., Takara, K., & Tamori, M. (1991). The effect of phosphorus and magnesium on sclerotium formationin Rhizoctonia solani Kuhn. Annual phytopathology Society of Japan, 57, 649–656.

    Article  CAS  Google Scholar 

  • Olutiola, P. O., & Cole, O. O. (1976). Production of a cellulose complex in culture filtrates of Aspergillus tamari associated with mouldy cocoa beans in Nigeria. Physiologia Plantarum, 37, 313–316.

    Article  CAS  Google Scholar 

  • Peters, B. M., Shirtliff, M. E., & Jabra-Rizk, M. A. (2010). Antimicrobial peptides: Primeval molecules or future drug? PLoS Pathogens, 6(10), e1001067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segura, A., Moreno, M., Madueno, F., Molina, A., & Garcia-Olmedo, F. (1999). Snakin-1, a peptide from potato that is active against plant pathogen. Molecular Plant Microbe Interaction, 12(1), 16–23.

    Article  CAS  Google Scholar 

  • Semighini, C. P., Harris, S. D. (2010). Methods to detect apoptotic-like cell death in filamentous fungi. IN: Molecular and cell biology methods for fungi, methods in molecular biology. Springer science + Business Media. 317 pp.

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., & Fritig, B. (1993). Plant "pathogenesis-related" proteins and their role in defense against pathogens. Biochimie, 75, 687–706.

    Article  CAS  PubMed  Google Scholar 

  • Swidergall, M., & Ernst, J. F. (2014). Interplay between Candida albicans and antimicrobial peptide armory. Eukaryotic Cell, 13(8), 950–957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taheri, P. (2018). Cereal diseases caused by Fusarium graminearum: From biology of the pathogen to oxidative burst-related host defense responses. European Journal of Plant Pathology, 152(1), 1–20.

    Article  CAS  Google Scholar 

  • Taheri, P., Gnanamanickam, S., & Hofte, M. (2007). Characterization, genetic structure, and pathogenicity of Rhizoctonia spp. associated with rice sheath disease in India. Phytopathology, 97(3), 373–383.

    Article  CAS  PubMed  Google Scholar 

  • Taheri, P., & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167, 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Taheri, P., & Tarighi, S. (2011). Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. European Journal of Plant Pathology, 129, 511–528.

    Article  Google Scholar 

  • Tailor, R. H., Acland, D. P., Attenborough, S., Cammue, B. P., Evans, I. J., Osborn, R. W., Ray, J. A., Rees, S. B., & Broekaert, W. F. (1997). A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens blasamina is derived from a single precursor protein. The Journal of Biological Chemistry, 272(39), 24480–24487.

    Article  CAS  PubMed  Google Scholar 

  • Tam, J. P., Wang, S., Wong, K. H., & Tan, W. L. (2015). Antimicrobial peptides from plants. Pharmaceutical, 8, 711–757.

    CAS  Google Scholar 

  • Terras, F. R., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Torrekens, S., Leuven, F. V., Vanderleyden, J., Cammue, B. P. A., & Broekaert, W. F. (1995). Small cysteine-rich antifungal proteins from radish: Their role in host defense. The Plant Cell, 7, 573–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terras, F. R., Schoofs, H. M., DeBolle, M. F., Van Leuven, F., Rees, S. B., Vanderleyden, J., Cammue, B. P., & Broekaert, W. F. (1992). Analysis of two novel classes of plant antifungal proteins from radish seeds. The Journal of Biological Chemistry, 5(267), 15301–15309.

    Article  Google Scholar 

  • Thaler, J. S., Fidantsef, A. L., Duffey, S. S., & Bostock, R. M. (1993). Trade-offs in plant defense against pathogens and herbivores: A field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology, 25, 1597–1609.

    Article  Google Scholar 

  • Tincu, J. A., & Taylor, S. W. (2004). Antimicrobial peptides from marine invertebrates. Antimicrobial Agents and Chemotherapy, 48, 3645–3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topman, S., Tamir-Ariel, D., Bochnic-Tamir, H., Bauer, T. S., Shafir, S., Burdman, S., & Hayouka, Z. (2018). Random peptide mixtures as new crop protection agents. Microbial Biotechnology, 11(6), 1027–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila-Perello, M., Sanchez-Vallet, A., Garcia-Olmedo, F., Molina, A., & Andreu, D. (2003). Synthetic and structural studies on Pyrularia pubera thionin: A single-residue mutation enhance activity against gram- negative bacteria. FEBS Letters, 536, 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Xi, K., Yang, M., Abbas, H. M. K., Wu, J., Li, M., & Dong, W. (2018). Antimicrobial genes from Allium sativum and Pinellia ternate revealed by Bacillus subtilis expression system. Scientific Reports, 8, 14514.

    Article  CAS  Google Scholar 

  • Yount, N. Y., & Yeaman, M. R. (2013). Peptide antimicrobials: Cell wall as a bacterial target. Annals of the New York Academy of science, 1277, 127–138.

    Article  CAS  Google Scholar 

  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Rozek, A., Robert, E., & Hancock, R. E. (2001). Interaction of cationic antimicrobial peptides with model membranes. The Journal of Biological Chemistry, 276, 35714–35722.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., Ding, L., Wang, Y., & Chen, Y. (2013). The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications, 4(1424), 1–10.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Ferdowsi University of Mashhad, Iran, for financial support of this research with project number 3/43459 approved on 3 April 2017. Also, this research was partly supported by Huazhong University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parissa Taheri.

Ethics declarations

Ethical statement

This manuscript complies to the ethical rules applicable for this journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassimi, Z., Taheri, P., Kong, X. et al. The antimicrobial peptide AsR416 can inhibit the growth, sclerotium formation and virulence of Rhizoctonia solani AG1-IA. Eur J Plant Pathol 160, 469–485 (2021). https://doi.org/10.1007/s10658-021-02257-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02257-0

Keywords

Navigation