Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 25, 2021

Effect of milling treatment and additives on the morphology evolution of α-alumina from a commercial boehmite precursor

  • Luoqiang Liu , Liang Zhang , Lingling Zhu EMAIL logo , Xing Zhang , Zexu Gao and Hongxia Li

Abstract

Because calcined alpha alumina (α-Al2O3) inherits the morphology characteristic of milled precursors, it is expected that the α-Al2O3 morphology could be improved by controlling the precursor morphology through the use of different milling processes. The microstructure evolution of the boehmite precursor under different milling treatments (planetary ball milling [PBM] and high-energy ball milling [HEBM]) and its influence on the microstructure of as-synthesized α-Al2O3 were investigated. The experimental results indicate that HEBM has a stronger modification effect in crystallinity, particle size and dispersibility of the boehmite precursor than PBM, which is of great importance to inhibit the formation of the typical worm-like structure of α-Al2O3. The microstructure of α-Al2O3 was further improved by the introduction of NH4BF4, NH4F and NH4Cl as additives. In particular, polygon-like α-Al2O3 particles with a size of 0.5 μm and a good dispersibility were prepared by calcination of the precursor with 30 h of HEBM and 20 wt.% NH4BF4.


Corresponding author: Lingling Zhu, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; and State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang, Henan 471039, P. R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: U1504526

Funding source: Key Scientific Research Project for Universities and Colleges in Henan Province

Award Identifier / Grant number: 19A430028

Funding source: Open Foundation of the State Key Laboratory of Refractories and Metallurgy

Award Identifier / Grant number: G201909

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the National Natural Science Foundation of China (Contract No. U1504526), Key Scientific Research Project for Universities and Colleges in Henan Province (Contract No. 19A430028) and the Open Foundation of the State Key Laboratory of Refractories and Metallurgy (G201909) for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chen, P. G., Wang, Y. L., Li, X. C., Zhu, B. Q. Int. J. Appl. Ceram. Technol. 2017, 14, 748–758; https://doi.org/10.1111/ijac.12701.Search in Google Scholar

2. Peng, N., Deng, C. J., Zhu, H. X., Li, J., Wang, S. H. Ceram. Int. 2015, 41, 5513–5524; https://doi.org/10.1016/j.ceramint.2014.12.127.Search in Google Scholar

3. Gu, W. J., Zhu, L. L., Shang, X. J., Ding, D. F., Liu, L. Q., Chen, L. G., Ye, G. T. J. Alloys Compd. 2019, 772, 637–641; https://doi.org/10.1016/j.jallcom.2018.09.128.Search in Google Scholar

4. Li, Y., Zhu, L. L., Liu, K., Ding, D. F., Zhang, J., Ye, G. T. Ceram. Int. 2019, 45, 12066–12071; https://doi.org/10.1016/j.ceramint.2019.03.103.Search in Google Scholar

5. Jia, J. G., Liu, D. Q., Zhang, S., Zhang, B., Liu, S. W., Ji, G. S. Ceram. Int. 2019, 45, 19956–19961; https://doi.org/10.1016/j.ceramint.2019.06.253.Search in Google Scholar

6. Ghafaripoor, M., Raeissi, K., Santamaria, M., Hakimizad, A. Surf. Coating. Technol. 2018, 349, 470–479; https://doi.org/10.1016/j.surfcoat.2018.06.027.Search in Google Scholar

7. Wu, Z. S., Shen, Y. D., Dong, Y., Jiang, J. Q. J. Alloys Compd. 2010, 467, 600–604; https://doi.org/10.1016/j.jallcom.2007.12.092.Search in Google Scholar

8. Lin, K. P., Stachiv, I., Fang, T. H. Mater. Res. Express 2017, 4, 075035, 1–7; https://doi.org/10.1088/2053-1591/aa7832.Search in Google Scholar

9. Dutta, S., Kim, T. B., Krentz, T., Vinci, R. P., Chan, H. M. J. Am. Ceram. Soc. 2011, 94, 340–343; https://doi.org/10.1111/j.1551-2916.2010.04307.x.Search in Google Scholar

10. Tian, Q. B., Zhang, Y. Y., Yang, X. J., Dai, J. S., Lv, Z. J. Mater. Res. Express 2017, 4, 1059041–6; https://doi.org/10.1088/2053-1591/aa91b0.Search in Google Scholar

11. Xiang, H. R., Wang, Z. Y., Yin, Q., Wang, L., Zhang, L. W., Wang, H. L., Xu, H. L., Zhang, R., Lu, H. X. Ceram. Int. 2019, 45, 22007–22014; https://doi.org/10.1016/j.ceramint.2019.07.215.Search in Google Scholar

12. Li, J., Pan, Y. B., Xiang, C. S., Ge, Q. M., Guo, J. K. Ceram. Int. 2006, 32, 587–591; https://doi.org/10.1016/j.ceramint.2005.04.015.Search in Google Scholar

13. Su, X. H., Chen, S. F., Zhou, Z. J. Appl. Surf. Sci. 2012, 258, 5712–5715; https://doi.org/10.1016/j.apsusc.2012.02.067.Search in Google Scholar

14. Kong, J., Chao, B. X., Wang, T., Yan, Y. L. Powder Technol. 2012, 229, 7–16; https://doi.org/10.1016/j.powtec.2012.05.024.Search in Google Scholar

15. Li, L., Pu, S. X., Liu, Y. H., Zhao, L. B., Ma, J., Li, J. G. Adv. Powder Technol. 2018, 29, 2194–2203; https://doi.org/10.1016/j.apt.2018.06.003.Search in Google Scholar

16. Chauruka, S. R., Hassanpour, A., Brydson, R., Roberts, K. J., Ghadiri, M., Stitt, H. Chem. Eng. Sci. 2015, 134, 774–783; https://doi.org/10.1016/j.ces.2015.06.004.Search in Google Scholar

17. Chiche, D., Chanéac, C., Revel, R., Jolivet, J. P. Stud. Surf. Sci. Catal. 2006, 162, 393–400; https://doi.org/10.1016/s0167-2991(06)80932-8.Search in Google Scholar

18. Fu, G. F., Wang, J., Xu, B., Gao, H., Xu, X. L., Cheng, H. Trans. Nonferrous Metals Soc. China 2010, 20, s221–s225; https://doi.org/10.1016/s1003-6326(10)60043-x.Search in Google Scholar

19. Zhu, L. L., Sun, C. H., Chen, L. G., Lu, X. F., Li, S., Ye, G. T., Liu, L. Q. Z. Naturforsch. 2017, 72b, 665–670; https://doi.org/10.1515/znb-2017-0079.Search in Google Scholar

20. Tafreshi, M. J., Khanghah, Z. M. Mater. Sci. 2015, 21, 28–31; https://doi.org/10.5755/j01.ms.21.1.4872.Search in Google Scholar

21. Liu, L. Q., Zhang, X., Zhu, L. L., Wei, Y. Z., Guo, C., Li, H. X. Z. Naturforsch. 2019, 74b, 579–583; https://doi.org/10.1515/znb-2019-0080.Search in Google Scholar

22. Baláž, P., Achimovičová, M., Baláž, M., Billik, P. Chem. Soc. Rev. 2013, 42, 7571–7637; https://doi.org/10.1039/C3CS35468G.Search in Google Scholar

23. Li, S., Zhu, L. L., Liu, L. Q., Chen, L. G., Li, H. X., Sun, C. H. Z. Naturforsch. 2018, 73b, 589–596; https://doi.org/10.1515/znb-2018-0080.Search in Google Scholar

24. Ren, Y. J., Sun, Z., Quan, G. G. Adv. Mater. Res. 2014, 852, 44–50; https://doi.org/10.4028/www.scientific.net/amr.852.44.Search in Google Scholar

Received: 2020-11-30
Accepted: 2020-12-19
Published Online: 2021-01-25
Published in Print: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0194/html
Scroll to top button