Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 7, 2019

Further refinements of generalized numerical radius inequalities for Hilbert space operators

  • Monire Hajmohamadi , Rahmatollah Lashkaripour EMAIL logo and Mojtaba Bakherad

Abstract

In this paper, we show some refinements of generalized numerical radius inequalities involving the Young and Heinz inequality. In particular, we present

wpp(A1*T1B1,,An*TnBn)n1-1r21ri=1n[Bi*f2(|Ti|)Bi]rp+[Ai*g2(|Ti*|)Ai]rp1r-infx=1η(x),

where Ti,Ai,Bi𝔹()(1in), f and g are nonnegative continuous functions on [0,) satisfying f(t)g(t)=t for all t[0,), p,r1, N, and

η(x)=12i=1nj=1N((Ai*g2(|Ti*|)Ai)px,x2j-1-kj(Bi*f2(|Ti|)Bi)px,xkj2j
-(Bi*f2(|Ti|)Bi)px,xkj+1(Ai*g2(|Ti*|)Ai)px,x2j-1-kj-12j)2.

MSC 2010: 47A12; 47A63; 47A30

References

[1] O. Axelsson, H. Lu and B. Polman, On the numerical radius of matrices and its application to iterative solution methods, Linear Multilinear Algebra 37 (1994), no. 1–3, 225–238. 10.1080/03081089408818325Search in Google Scholar

[2] M. Bakherad, M. Krnić and M. S. Moslehian, Reverse Young-type inequalities for matrices and operators, Rocky Mountain J. Math. 46 (2016), no. 4, 1089–1105. 10.1216/RMJ-2016-46-4-1089Search in Google Scholar

[3] M. Boumazgour and H. A. Nabwey, A note concerning the numerical range of a basic elementary operator, Ann. Funct. Anal. 7 (2016), no. 3, 434–441. 10.1215/20088752-3605510Search in Google Scholar

[4] K. E. Gustafson and D. K. M. Rao, Numerical Range, Universitext, Springer, New York, 1997. 10.1007/978-1-4613-8498-4Search in Google Scholar

[5] M. Hajmohamadi, R. Lashkaripour and M. Bakherad, Some generalizations of numerical radius on off-diagonal part of 2×2 operator matrices, J. Math. Inequal. 12 (2018), no. 2, 447–457. 10.7153/jmi-2018-12-33Search in Google Scholar

[6] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Grad. Texts in Math. 19, Springer, New York, 1982. 10.1007/978-1-4684-9330-6Search in Google Scholar

[7] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Math. Lib., Cambridge University, Cambridge, 1988. Search in Google Scholar

[8] R. Kaur, M. S. Moslehian, M. Singh and C. Conde, Further refinements of the Heinz inequality, Linear Algebra Appl. 447 (2014), 26–37. 10.1016/j.laa.2013.01.012Search in Google Scholar

[9] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293. 10.2977/prims/1195175202Search in Google Scholar

[10] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010), no. 1, 262–269. 10.1016/j.jmaa.2009.08.059Search in Google Scholar

[11] M. S. Moslehian and M. Sattari, Inequalities for operator space numerical radius of 2×2 block matrices, J. Math. Phys. 57 (2016), no. 1, Article ID 015201. Search in Google Scholar

[12] M. S. Moslehian, M. Sattari and K. Shebrawi, Extensions of Euclidean operator radius inequalities, Math. Scand. 120 (2017), no. 1, 129–144. 10.7146/math.scand.a-25509Search in Google Scholar

[13] G. Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc. 200 (2009), no. 941, 1–91. 10.1090/memo/0941Search in Google Scholar

[14] M. Sababheh and D. Choi, A complete refinement of Young’s inequality, J. Math. Anal. Appl. 440 (2016), no. 1, 379–393. 10.1016/j.jmaa.2016.03.049Search in Google Scholar

[15] M. Sattari, M. S. Moslehian and T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl. 470 (2015), 216–227. 10.1016/j.laa.2014.08.003Search in Google Scholar

[16] A. Sheikhhosseini, M. S. Moslehian and K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. Appl. 445 (2017), no. 2, 1516–1529. 10.1016/j.jmaa.2016.03.079Search in Google Scholar

[17] T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83–89. 10.4064/sm178-1-5Search in Google Scholar

[18] A. Zamani, Some lower bounds for the numerical radius of Hilbert space operators, Adv. Oper. Theory 2 (2017), no. 2, 98–107. Search in Google Scholar

Received: 2016-09-29
Accepted: 2018-05-21
Published Online: 2019-05-07
Published in Print: 2021-02-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/gmj-2019-2023/html
Scroll to top button