Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access January 27, 2021

Chlorine as a Discriminant Element to Establish the Provenance of Central Mediterranean Obsidians

  • Franco Foresta Martin EMAIL logo , Silvio G. Rotolo , Manuela Nazzari and Maria Luisa Carapezza
From the journal Open Archaeology

Abstract

Chlorine is a minor element present in obsidians in quantities greater than in average igneous rocks. The chlorine concentration in obsidians is generally low, of the order of tenths of wt %, but it exhibits an appreciable differentiation among geological sources. Despite these characteristics, chlorine has rarely been taken into consideration as a possible indicator of obsidian provenance and it does not appear in the chemical analytical tables accompanying the geochemical characterisation of obsidian samples.

In this work, after an overview of chlorine geochemistry and cycle, we present thirty-one new electron microprobe (EPMA) analyses, including Cl, of geologic obsidians sampled from the four sources of the Central Mediterranean, exploited in prehistoric times (Monte Arci, Palmarola, Lipari and Pantelleria). The results are compared with 175 new EPMA analyses, including Cl, of archaeological obsidians already characterised in previous work and of known provenance. As such it was possible to ascertain that each source has a characteristic chlorine concentration, showing the utility of its use in the studies of obsidian provenance. Furthermore, given that the solubility of chlorine in silicate melts is correlated to its alkali content, in particular sodium, we assessed the efficacy of simple binary graphs Cl vs Na2O to better constrain the provenance of the obsidian samples.

References

Acquafredda, P., Andriani, T., Lorenzoni, S., & Zanettin, E. (1999). Chemical characterization of obsidians from different Mediterranean sources by non-destructive SEM-EDS analytical method. Journal of Archaeological Science, 26(3), 315–325. https://doi.org/10.1006/jasc.1998.037210.1006/jasc.1998.0372Search in Google Scholar

Acquafredda, P., & Paglionico, A. (2004). SEM-EDS microanalysis of microphenocrysts of Mediterranean obsidians: a preliminary approach to source discrimination. European Journal of Mineralogy, 16(3), 419–429. https://doi.org/10.1127/0935-1221/2004/0016-041910.1127/0935-1221/2004/0016-0419Search in Google Scholar

Acquafredda, P., & Muntoni, I. M. (2008). Obsidian from Pulo di Molfetta (Bari, Southern Italy): provenance from Lipari and first recognition of a Neolithic sample from Monte Arci (Sardinia). Journal of Archaeological Science, 35(4), 947–955. https://doi.org/10.1016/j.jas.2007.06.01710.1016/j.jas.2007.06.017Search in Google Scholar

Arias, C., Bigazzi, G., & Bonadonna, F. P. (1980). Studio cronologico e paleomagnetico di alcune serie sedimentarie dell’Italia apenninica. Contributi preliminari alla realizzazione della Carta Neotettonica d’Italia. Pub. no. 356 of the Geodynamic Finalized Program-Neotectonic Sub-Project, 1441–1448.Search in Google Scholar

Barberi, F., Borsi, S., Ferrara, G., & Innocenti, F. (1967). Contributo alla conoscenza vulcanologica e magmatologica delle isole dell’Arcipelago Pontino. Memorie della Societa Geologica Italiana, 6, 581–606.Search in Google Scholar

Barca, D., De Francesco, A. M., & Crisci, G. M. (2007). Application of Laser Ablation ICP-MS for characterization of obsidian fragments from peri-Tyrrhenian area. Journal of Cultural Heritage, 8(2), 141–150. https://doi.org/10.1016/j.culher.2006.12.00110.1016/j.culher.2006.12.001Search in Google Scholar

Bellot-Gurlet, L., Bigazzi, G., Dorighel, O., Oddone, M., Poupeau, G., & Yegingil, Z. (1999). The fission-track analysis: An alternative technique for provenance studies of prehistoric obsidian artefacts. Radiation Measurements, 31(1-6), 639–644. https://doi.org/10.1016/S1350-4487(99)00157-210.1016/S1350-4487(99)00157-2Search in Google Scholar

Bigazzi, G., Bonadonna, F. P., Belluomini, G., & Malpieri, L. (1971). Studi sulle ossidiane italiane. IV. Datazione con il metodo delle tracce di fissione. Bollettino della Società Geologica Italiana, 6, 581–606.Search in Google Scholar

Bigazzi, G., & Bonadonna, F. (1973). Fission track dating of the obsidian of Lipari Island (Italy). Nature, 242(5396), 322–323. https://doi.org/10.1038/242322a010.1038/242322a0Search in Google Scholar

Bonifacie, M., Jendrzejewski, N., Agrinier, P., Humler, E., Coleman, M., & Javoy, M. (2008). The chlorine isotope composition of Earth’s mantle. Science, 319(5869), 1518–1520. https://doi.org/10.1126/science.1150988 PMID:1833993610.1126/science.1150988Search in Google Scholar

Bowen, N. L. (1937). Recent high-temperature research on silicates and its significance in igneous geology. American Journal of Science, s5-33(193), 1–21. https://doi.org/10.2475/ajs.s5-33.193.110.2475/ajs.s5-33.193.1Search in Google Scholar

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957). Synthesis of the Elements in Stars. Reviews of Modern Physics, 29(4), 547–650. https://doi.org/10.1103/RevModPhys.29.54710.1103/RevModPhys.29.547Search in Google Scholar

Cadoux, A., Pinti, D. L., Aznar, C., Chiesa, S., & Gillot, P. Y. (2005). New chronological and geochemical constraints on the genesis and geological evolution of Ponza and Palmarola volcanic islands (Tyrrhenian Sea, Italy). Lithos, 81(1-4), 121–151. https://doi.org/10.1016/j.lithos.2004.09.02010.1016/j.lithos.2004.09.020Search in Google Scholar

Cameron, A. G. (1973). Abundances of the elements in the solar system. Space Science Reviews, 15(1), 121–146. https://doi.org/10.1007/BF0017244010.1007/BF00172440Search in Google Scholar

Cann, J. R., & Renfrew, C. (1964). The characterization of obsidian and its application to the Mediterranean region. Proceedings of the Prehistoric Society, 30, 111–133. https://doi.org/10.1017/S0079497X0001509710.1017/S0079497X00015097Search in Google Scholar

Carroll, M. R. (2005). Chlorine solubility in evolved alkaline magmas. Annals of Geophysics, 48(4-5), 619–630.Search in Google Scholar

Carroll, M. R., & Webster, J. D. (1994). Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. In M. R. Carroll & J. R. Holloway (Eds.), Volatiles in Magmas (Reviews in Mineralogy & Geochemistry, Vol. 30, pp. 231–279). https://doi.org/10.1515/9781501509674-01310.1515/9781501509674-013Search in Google Scholar

Clark, F. W., & Washington, H. S. (1924). The composition of the earth’s crust. (Professional paper (Geological Survey (U.S.)), no. 127, pp. 8–16). Washington: Department of the Interior, United States Geological Survey.Search in Google Scholar

Cornaggia Castiglioni, O., Fussi, F., & D’Agnolo, M. (1963). Indagini sulla provenienza dell’ossidiana utilizzata nelle industrie preistoriche del Mediterraneo occidentale. Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano, 102, 310–322.Search in Google Scholar

De Francesco, A. M., Crisci, G. M., & Bocci, M. (2008). Non-destructive analytic method using XRF for determination of provenance of archaeological obsidians from the Mediterranean area: A comparison with traditional XRF methods. Archaeometry, 50(2), 337–350. https://doi.org/10.1111/j.1475-4754.2007.00355.x10.1111/j.1475-4754.2007.00355.xSearch in Google Scholar

Donato, P., Barba, L., De Rosa, R., Niceforo, G., Pastrana, A., Donato, S., . . . Crisci, G. M. (2018). Green, grey and black: A comparative study of Sierra de las Navajas (Mexico) and Lipari (Italy) obsidians. Quaternary International, 467, 369–390. https://doi.org/10.1016/j.quaint.2017.11.02110.1016/j.quaint.2017.11.021Search in Google Scholar

Eggenkamp, H. (2014). The geochemistry of stable chlorine and bromine isotopes. Berlin: Springer. https://doi.org/10.1007/978-3-642-28506-610.1007/978-3-642-28506-6Search in Google Scholar

Ewart, A. (1971). Chemical changes accompanying spherulitic crystallization in rhyolitic lavas, Central Volcanic Region, New Zealand. Mineralogical Magazine, 38(296), 424–434. https://doi.org/10.1180/minmag.1971.038.296.0410.1180/minmag.1971.038.296.04Search in Google Scholar

Foresta Martin, F., Di Piazza, A., D’Oriano, C., Carapezza, M. L., Paonita, A., Rotolo, S. G., & Sagnotti, L. (2017). New insights into the provenance of the obsidian fragments of the island of Ustica (Palermo, Sicily). Archaeometry, 59(3), 435–454. https://doi.org/10.1111/arcm.1227010.1111/arcm.12270Search in Google Scholar

Forni, F., Lucchi, F., Peccerillo, A., Tranne, C.A., Rossi, P. L., & Frezzotti, M. L. (2013). Stratigraphy and geological evolution of the Lipari volcanic complex (central Aeolian archipelago). In Lucchi, F. Peccerillo, A, Keller, J., Tranne, C. A., & Rossi, P. L. The Aeolian Islands Volcanoes (Memoirs Vol. 37, pp. 213–279). London: Geological Society. https://doi.org/10.1144/M37.1010.1144/M37.10Search in Google Scholar

Francaviglia, V. (1988). Ancient obsidian sources on Pantelleria (Italy). Journal of Archaeological Science, 15(2), 109–122. https://doi.org/10.1016/0305-4403(88)90001-510.1016/0305-4403(88)90001-5Search in Google Scholar

Francaviglia, V. M. (2001). The search for a reliable discrimination between Mediterranean obsidians. Proceedings of “Il vetro in Italia meridionale e insulare” (pp. 5–7).Search in Google Scholar

Gratuze, B. (1999). Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science, 26(8), 869–881. https://doi.org/10.1006/jasc.1999.045910.1006/jasc.1999.0459Search in Google Scholar

Glascock, M. D., Braswell, G. E., & Cobean, R. H. (1998). A systematic approach to obsidian source characterization. In Shackley M.S. (Eds.), Archaeological Obsidian Studies (Advances in Archaeological and Museum Science, Vol 3, pp. 15–65). Boston, MA: Springer. https://doi.org/10.1007/978-1-4757-9276-8_210.1007/978-1-4757-9276-8_2Search in Google Scholar

Hallam, B. R., Warren, S. E., & Renfrew, C. (1976). Obsidian in the western Mediterranean: Characterization by neutron activation analysis and optical emission spectroscopy. Proceedings of the Prehistoric Society, 42, 85–110. https://doi.org/10.1017/S0079497X0001071910.1017/S0079497X00010719Search in Google Scholar

Hanyu, T., Shimizu, K., Ushikubo, T., Kimura, J. I., Chang, Q., Hamada, M., . . . Ishikawa, T. (2019). Tiny droplets of ocean island basalts unveil Earth’s deep chlorine cycle. Nature Communications, 10(1), 60. https://doi.org/10.1038/s41467-018-07955-8 PMID:3061019510.1038/s41467-018-07955-8Search in Google Scholar

Italiano, F., Correale, A., Di Bella, M., Foresta Martin, F., Martinelli, M. C., Sabatino, G., & Spatafora, F. (2018). The neolithic obsidian artifacts from Roccapalumba (Palermo, Italy): First characterization and provenance determination. Mediterranean Archaeology & Archaeometry, 18(3), 151–167. http://doi.org/10.5281/zenodo.1476967Search in Google Scholar

Jarrad, R. D. (2003). Subduction fluxes of water, carbon dioxid, chlorine, and potassium. Geochemistry, Geophysics, Geosystems, 4, 8905. https://doi.org/10.1029/2002GC00039210.1029/2002GC000392Search in Google Scholar

Jordan, N. J., Rotolo, S. G., Williams, R., Speranza, F., McIntosh, W. C., Branney, M. J., & Scaillet, S. (2018). Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano. Journal of Volcanology and Geothermal Research, 349, 47–73. https://doi.org/10.1016/j.jvolgeores.2017.09.01310.1016/j.jvolgeores.2017.09.013Search in Google Scholar

Jwa, Y. J., Yi, S., Jin, M. E., Kasztovszky, Z., Harsányi, I., & Sun, G. M. (2018). Application of prompt gamma activation analysis to provenance study of the Korean obsidian artefacts. Journal of Archaeological Science, Reports, 20, 374–381. https://doi.org/10.1016/j.jasrep.2018.05.01610.1016/j.jasrep.2018.05.016Search in Google Scholar

Kasztovszky, Z., & Biró, K. (2006). Fingerprinting Carpathian obsidians by PGAA: first results on geological and archaeological specimens. In 34th International Symposium on Archaeometry (pp. 301–308). Centro de Estudios Borjanos.Search in Google Scholar

Kasztovszky, Z., Biró, K. T., & Kis, Z. (2014). Prompt Gamma Activation Analysis of the Nyírlugos obsidian core depot find. Journal of Lithic Studies, 1(1), 151–163. https://doi.org/10.2218/jls.v1i1.78410.2218/jls.v1i1.784Search in Google Scholar

Kasztovszky, Z., Biró, K. T., Nagy-Korodi, I., Sztáncsuj, S. J., Hágó, A., Szilágyi, V., . . . Mirea, P. (2019). Provenance study on prehistoric obsidian objects found in Romania (Eastern Carpathian Basin and its neighbouring regions) using Prompt Gamma Activation Analysis. Quaternary International, 510, 76–87. https://doi.org/10.1016/j.quaint.2018.12.02010.1016/j.quaint.2018.12.020Search in Google Scholar

Kuroda, P. K., & Sandell, E. B. (1953). Chlorine in igneous rocks: Some aspects of the geochemistry of chlorine. Geological Society of America Bulletin, 64(8), 879–896. https://doi.org/10.1130/0016-7606(1953)64[879:CIIR]2.0.CO;2Search in Google Scholar

Lanzo, G., Landi, P., & Rotolo, S. G. (2013). Volatiles in pantellerite magmas: A case study of the Green Tuff Plinian eruption (Island of Pantelleria, Italy). Journal of Volcanology and Geothermal Research, 262, 153–163. https://doi.org/10.1016/j.jvolgeores.2013.06.01110.1016/j.jvolgeores.2013.06.011Search in Google Scholar

Le Bourdonnec, F. X., Poupeau, G., & Lugliè, C. (2006). SEM–EDS analysis of western Mediterranean obsidians: A new tool for Neolithic provenance studies. Comptes Rendus Geoscience, 338(16), 1150–1157. https://doi.org/10.1016/j.crte.2006.09.01810.1016/j.crte.2006.09.018Search in Google Scholar

Le Bourdonnec, F. X., Bontempi, J. M., Marini, N., Mazet, S., Neuville, P. F., Poupeau, G., & Sicurani, J. (2010). SEM-EDS characterization of western Mediterranean obsidians and the Neolithic site of A Fuata (Corsica). Journal of Archaeological Science, 37(1), 92–106. https://doi.org/10.1016/j.jas.2009.09.01610.1016/j.jas.2009.09.016Search in Google Scholar

Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., . . . Lameyre, J. (2002). Igneous Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press: Cambridge.10.1017/CBO9780511535581Search in Google Scholar

Lipman, P. W., Christiansen, R. L., & Alstine, R. E. V. (1969). Retention of alkalis by calc-alkalic rhyolites during crystallization and hydration. American Mineralogist: Journal of Earth and Planetary Materials, 54(1-2), 286–291.Search in Google Scholar

Lowenstern, J. B. (1994). Chlorine, fluid immiscibility, and degassing in peralkaline magmas from Pantelleria, Italy. The American Mineralogist, 79, 353–369.Search in Google Scholar

Macdonald, R., & Bailey, D. K. (1973). The chemistry of the peralkaline oversaturated obsidians. Washington, DC: US Gov.Search in Google Scholar

Macdonald, R., Smith, R. L., & Thomas, J. E. (1992). Chemistry of the subalkalic silicic obsidians. Washington: U.S. G.P.O.Search in Google Scholar

Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635–643. https://doi.org/10.1130/0016-7606(1989)1012.3.CO;2Search in Google Scholar

Metrich, N., & Rutherford, M. J. (1992). Experimental study of chlorine in hydrous silicicmelts. Geochimica et Cosmochimica Acta, 56(2), 607–616. https://doi.org/10.1016/0016-7037(92)90085-W10.1016/0016-7037(92)90085-WSearch in Google Scholar

Miyashiro, A. (1978). Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology, 66(1), 91–104. https://doi.org/10.1007/BF0037608910.1007/BF00376089Search in Google Scholar

Montanini, A., & Villa, I. M. (1993). 40Ar/39Ar chronostratigraphy of Monte Arci volcanic complex (western Sardinia, Italy). Acta Vulcanologica, 3, 229–233.Search in Google Scholar

Palme, H., Lodders, K., & Jones, A. (2014). In M. Andrew (Ed.), Solar system abundances of the elements. Planets, Asteriods, Comets and The Solar System, Treatise on Geochemistry (2nd ed., Vol. 2, pp. 15–36). Davis: Elsevier.Search in Google Scholar

Press, F., & Siever, R. (1978). Earth. San Francisco, California: WH Freeman & Company.Search in Google Scholar

Radi, G., Bigazzi, G., & Bonadonna, F. (1972). Le tracce di fissione. Un metodo per lo studio delle vie di commercio dell’ossidiana. Origini, 6, 155–169.Search in Google Scholar

Rotolo, S. G., Carapezza, M. L., Correale, A., Foresta Martin, F., Hahn, G., Hodgetts, A. G. E., . . . Speranza, F. (2020). Obsidians of Pantelleria (Strait of Sicily): A Petrographic, Geochemical and Magnetic Study of Known and New Geological Sources. Open Archaeology, 6(1), 434–453. https://doi.org/10.1515/opar-2020-012010.1515/opar-2020-0120Search in Google Scholar

Rubey, W. W. (1951). Geologic history of sea water: An attempt to state the problem. Geological Society of America Bulletin, 62(9), 1111–1148. https://doi.org/10.1130/0016-7606(1951)62[1111:GHOSW]2.0.CO;2Search in Google Scholar

Schilling, J. G., Unni, C. K., & Bender, M. L. (1978). Origin of chlorine and bromine in the oceans. Nature, 273(5664), 631–636. https://doi.org/10.1038/273631a010.1038/273631a0Search in Google Scholar

Shand, S. J. (1927). Eruptive Rocks. New York: D. Van Nostrand Company.Search in Google Scholar

Sharp, Z. D., & Draper, D. S. (2013). The chlorine abundance of Earth: Implications for a habitable planet. Earth and Planetary Science Letters, 369, 71–77. https://doi.org/10.1016/j.epsl.2013.03.00510.1016/j.epsl.2013.03.005Search in Google Scholar

Signorelli, S., & Carroll, M. (2002). Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contributions to Mineralogy and Petrology, 143(2), 209-218. https://doi.org/10.1007/s00410-001-0320-y10.1007/s00410-001-0320-ySearch in Google Scholar

Tykot, R. H. (1992). The sources and distribution of Sardinian obsydian. In Tykot, R. H. & Andrews, T. K. (Eds.), Sardinia in the Mediterranean: a footprint in the sea (pp: 57–70). Sheffield: Sheffield Academic Press.Search in Google Scholar

Tykot, R. H. (1995). Appendix I: obsidian provenance. In R.R. Holloway & S.S. Lukesh (Eds.), Ustica I. The Results of the Excavations of the Regione Siciliana Soprintendenza ai Beni Culturali ed Ambientali Provincia di Palermo in Collaboration with Brown University in 1990 and 1991 (Archaeologia Transatlantica XIV, pp. 87–90). Providence, R.I.: Center for Old World Archaeology and Art, Brown University.Search in Google Scholar

Tykot, R. H. (2002). Chemical fingerprinting and source tracing of obsidian: The central Mediterranean trade in black gold. Accounts of Chemical Research, 35(8), 618–627. https://doi.org/10.1021/ar000208p PMID:1218656610.1021/ar000208pSearch in Google Scholar

Tykot, R. H., & Young, S. M. M. (1996). Archaeological Applications of Inductively Coupled Plasma- Mass Spectrometry. In M. V. Orna (Ed.), Archaeological Chemistry V (pp. 116–130). Washington, DC: American Chemical Society. https://doi.org/10.1021/bk-1996-0625.ch01010.1021/bk-1996-0625.ch010Search in Google Scholar

Tykot, R. H., Setzer, T., Glascock, M. D., & Speakman, R. J. (2005). Identification and characterization of the obsidian sources on the island of Palmarola, Italy. Geoarchaeological and Bioarchaeological Studies, 3, 107–111.Search in Google Scholar

Urey, H. C. (1951). The origin and development of the earth and other terrestrial planets. Geochimica et Cosmochimica Acta, 1(4-6), 209–277. https://doi.org/10.1016/0016-7037(51)90001-410.1016/0016-7037(51)90001-4Search in Google Scholar

Williams-Thorpe, O. (1995). Obsidian in the Mediterranean and the Near East: A provenancing success story. Archaeometry, 37(2), 217–248. https://doi.org/10.1111/j.1475-4754.1995.tb00740.x10.1111/j.1475-4754.1995.tb00740.xSearch in Google Scholar

Webster, J. (1997). Chloride solubility in felsic melts and the role of chloride in magmatic degassing. Journal of Petrology, 38(12), 1793–1807. https://doi.org/10.1093/petroj/38.12.179310.1093/petroj/38.12.1793Search in Google Scholar

Winterton, N. (2000). Chlorine: The only green element–towards a wider acceptance of its role in natural cycles. Green Chemistry, 2(5), 173–225. https://doi.org/10.1039/b003394o10.1039/b003394oSearch in Google Scholar

Zanchetta, G., Sulpizio, R., Roberts, N., Cioni, R., Eastwood, W. J., Siani, G., . . . Santacroce, R. (2011). Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: An overview. The Holocene, 21(1), 33–52. https://doi.org/10.1177/095968361037753110.1177/0959683610377531Search in Google Scholar

Received: 2020-08-21
Accepted: 2020-12-01
Published Online: 2021-01-27

© 2020 Franco Foresta Martin et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/opar-2020-0124/html
Scroll to top button