Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fungal decomposition of river organic matter accelerated by decreasing glacier cover

Abstract

Climate change is altering the structure and functioning of river ecosystems worldwide. In mountain rivers, glacier retreat has been shown to result in systematic changes in aquatic invertebrate biodiversity, but the effects of ice loss on other biological taxa and on whole-ecosystem functions are less well understood. Using data from mountain rivers spanning six countries on four continents, we show that decreasing glacier cover leads to consistent fungal-driven increases in the decomposition rate of cellulose, the world’s most abundant organic polymer. Cellulose decomposition rates were associated with greater abundance of aquatic fungi and the fungal cellulose-degrading Cellobiohydrolase I (cbhI) gene, illustrating the potential for predicting ecosystem-level functions from gene-level data. Clear associations between fungal genes, populations and communities and ecosystem functioning in mountain rivers indicate that ongoing global decreases in glacier cover can be expected to change vital ecosystem functions, including carbon cycle processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution and experimental details of glacierized mountain river sampling sites.
Fig. 2: Globally consistent relationships between catchment glacier cover, abundance of fungal biomass from cotton-strip assay fungal communities and tensile-strength loss of river-incubated cotton strips.
Fig. 3: Comparison of glacierized mountain river cellulose decomposition rates with those in other biomes.

Similar content being viewed by others

Data availability

The raw demultiplexed sequence data have been uploaded to the NCBI Sequence Read Archive with BioProject accession number PRJNA684135. A dataset has been deposited with the NERC Environmental Information Data Centre at https://doi.org/10.5285/fec704d2-ee6a-427b-9345-850dd96ff1b4.

References

  1. Huss, M. et al. Towards mountains without permanent snow and ice. Earth’s Future 5, 418–435 (2017).

    Article  Google Scholar 

  2. Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Article  CAS  Google Scholar 

  3. Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018).

    Article  Google Scholar 

  4. Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article  Google Scholar 

  5. Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    Article  CAS  Google Scholar 

  6. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  7. Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).

    Article  Google Scholar 

  8. Zhou, L. et al. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. Water Res. 160, 18–28 (2019).

    Article  CAS  Google Scholar 

  9. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  CAS  Google Scholar 

  10. Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).

    Article  Google Scholar 

  11. Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).

    Article  Google Scholar 

  12. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between lands, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  13. Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  CAS  Google Scholar 

  14. Clark, D. R. et al. Streams of data from drops of water: 21st century molecular microbial ecology. WIREs Water 5, e1280 (2018).

    Article  Google Scholar 

  15. Zah, R. & Uehlinger, U. Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshw. Biol. 46, 1597–1608 (2001).

    Article  CAS  Google Scholar 

  16. Singer, G. A. et al. Biogeochemically diverse organic matter in alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).

    Article  CAS  Google Scholar 

  17. Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657, 107–121 (2010).

    Article  CAS  Google Scholar 

  18. Robinson, C. T. & Gessner, M. O. Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122, 258–263 (2000).

    Article  CAS  Google Scholar 

  19. Robinson, C. T. & Jolidon, C. Leaf breakdown and the ecosystem functioning of alpine streams. J. North Am. Benthol. Soc. 24, 495–508 (2005).

    Article  Google Scholar 

  20. McKernan, C., Cooper, D. J. & Schweiger, E. W. Glacial loss and its effect on riparian vegetation of alpine streams. Freshw. Biol. 63, 518–529 (2018).

    Article  Google Scholar 

  21. Fellman, J. B. et al. Stream temperature response to variable glacier coverage in coastal watersheds of southeast Alaska. Hydrol. Process. 28, 2062–2073 (2014).

    Article  Google Scholar 

  22. Gessner, M. O. & Robinson, C. T. in Aquatic Ecology Series: Ecology of a Glacial Floodplain Vol. 1 (eds Ward, J. V. & Uehlinger, U.) 123–127 (Springer, 2003).

  23. Tiegs, S. D., Clapcott, J. E., Griffiths, N. A. & Boulton, A. J. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol. Indic. 32, 131–139 (2013).

    Article  CAS  Google Scholar 

  24. Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).

    Article  Google Scholar 

  25. Ward, N. D. et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6, 530–533 (2013).

    Article  CAS  Google Scholar 

  26. Colas, F. et al. Towards a simple global-standard bioassay for a key ecosystem process: organic-matter decomposition using cotton strips. Ecol. Indic. 106, 105466 (2019).

    Article  CAS  Google Scholar 

  27. Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-decomposing bacteria and their enzyme systems. Prokaryotes 2, 578–617 (2006).

    Article  Google Scholar 

  28. Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. N. Phytol. Trust 199, 288–299 (2013).

    Article  CAS  Google Scholar 

  29. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  30. Wang, M. et al. Psychrophilic fungi from the world’s roof. Persoonia 34, 100–112 (2015).

    Article  CAS  Google Scholar 

  31. Zang, T. et al. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543–554 (2016).

    Article  Google Scholar 

  32. Wilhelm, L., Singer, G. A., Fashing, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).

    Article  CAS  Google Scholar 

  33. Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).

    Article  Google Scholar 

  34. Jacobsen, D. & Dangles, O. Environmental harshness and global richness patterns in glacier-fed streams. Glob. Ecol. Biogeogr. 21, 647–656 (2012).

    Article  Google Scholar 

  35. Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1042 (2008).

    Article  CAS  Google Scholar 

  36. Robinson, C. T., Gessner, M. O., Callies, K. A., Jolidon, C. & Ward, J. V. Larch needle breakdown in contrasting streams of an alpine glacial floodplain. J. North Am. Benthol. Soc. 19, 250–262 (2000).

    Article  Google Scholar 

  37. Ferreira, V., Graça, M., Pedroso de Lima, J. L. M. & Gomes, R. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Arch. fur Hydrobiol. 165, 493–513 (2006).

    Article  CAS  Google Scholar 

  38. Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).

    Article  CAS  Google Scholar 

  39. Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 9, 5443–5452 (2003).

    Article  Google Scholar 

  40. Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).

    Article  Google Scholar 

  41. Cristiano, G., Cicolani, B., Miccoli, F. P. & Di Sabatino, A. A modification of the leaf-bags method to assess spring ecosystem functioning: benthic invertebrates and leaf-litter breakdown in Vera Spring (central Italy). PeerJ 7, e6250 (2019).

    Article  Google Scholar 

  42. Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).

    Article  Google Scholar 

  43. Hood, E. & Berner, L. Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J. Geophys. Res. Biogeosci. 114, G03001 (2009).

    Article  Google Scholar 

  44. Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shifts in dissolved organic carbon export from quasi-chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).

    Article  CAS  Google Scholar 

  45. Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).

    Article  Google Scholar 

  46. GLIMS Glacier Viewer (Global Land Ice Measurements from Space (GLIMS), 2018); http://www.glims.org/maps/glims

  47. Robinson, C. T., Gessner, M. O. & Ward, J. V. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshw. Biol. 40, 215–228 (1998).

    Article  Google Scholar 

  48. Goodman, K. J., Baker, M. & Wurtsbaugh, W. Mountain lakes increase organic matter decomposition rates in streams. J. North Am. Benthol. Soc. 29, 521–529 (2010).

    Article  Google Scholar 

  49. Pfankuch, D. J. Stream Reach Inventory and Channel Stability Evaluation (Northern Region, Montana, US Department Forest Service, 1975).

  50. Vizza, C., Zwart, J. A., Jones, S. E., Tiegs, S. D. & Lamberti, G. A. Landscape patterns shape wetland pond ecosystem function from glacial headwaters to ocean. Limnol. Oceanogr. 62, S207–S221 (2017).

    Article  CAS  Google Scholar 

  51. Tiegs, S. D. CELLDEX Protocol Part 1 https://www.researchgate.net/publication/281243407_CELLDEX_Protocol_Part_1 (2015).

  52. Tiegs, S. D. Protocol for Microbial DNA/RNA Sampling—CELLDEX Protocol https://www.researchgate.net/publication/281245895_Protocol_for_microbial_DNARNA_sampling_-_CELLDEX_Project (2015).

  53. Tiegs, S. D., Langhans, S. D., Tockner, K. & Gessner, M. O. Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. J. North Am. Benthol. Soc. 26, 70–77 (2007).

    Article  Google Scholar 

  54. Tiegs, S. D. CELLDEX Protocol Part 2 https://www.researchgate.net/publication/283645782_CELLDEX_Protocol_Part_2 (2015).

  55. Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).

    Article  CAS  Google Scholar 

  56. Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).

    Article  CAS  Google Scholar 

  57. Edwards, I. P., Upchurch, R. A. & Zak, D. R. Isolation of fungal Cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl. Environ. Microbiol. 74, 3481–3489 (2008).

    Article  CAS  Google Scholar 

  58. McKew, B. A. & Smith, C. J. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 45–64 (Springer, 2017).

  59. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).

    Article  CAS  Google Scholar 

  60. Nilsson, R. H. et al. Variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4, 193–201 (2008).

    Article  Google Scholar 

  61. Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E. & Kristiansson, E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett. 296, 97–111 (2009).

    Article  CAS  Google Scholar 

  62. 16S Metagenomic Sequencing Library Preparation (Illumina, 2013); https://ww.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf

  63. Kreader, C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62, 1102–1106 (1995).

    Article  Google Scholar 

  64. Dumbrell, A. J., Ferguson, R. M. W. & Clark, D. R. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 155–206 (Springer, 2017).

  65. Maček, I. et al. Impacts of long-term elevated atmospheric CO2 concentrations on communities of arbuscular mycorrhizal fungi. Mol. Ecol. 28, 3445–3458 (2019).

    Article  Google Scholar 

  66. Nilsson, R. H. et al. UNITE Community: Communication and Identification of DNA Based Fungal Species (UNITE, 2018); https://unite.ut.ee/search.php#fndtn-panel1

  67. Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).

    Article  Google Scholar 

  68. Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 2–18 (2017).

    Article  Google Scholar 

  69. McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

    Article  Google Scholar 

  70. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Article  Google Scholar 

  71. Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    Article  Google Scholar 

  72. Wang, Y., Maumann, U., Wright, S. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data. R package https://cran.r-project.org/package=mvabund (2018).

Download references

Acknowledgements

This research was funded by a Natural Environment Research Council Scholarship (no. NE/L002574/1) awarded to S.C.F. Additional financial support for laboratory overheads was provided to S.C.F. by the River Basin Processes and Management Cluster, School of Geography, University of Leeds. S.C.F., L.E.B. and J.L.C. received funding from INTERACT under the European Union H2020 (GLAC-REF, grant agreement no. 730938, Transnational Access) for fieldwork in Finse, Norway. Fieldwork in Ecuador was funded by the Pontifical Catholic University of Ecuador under project no. M13434 (PUCE 2016-2017). A.J.D. and K.C.R. were supported by a Natural Environment Research Council grant (no. NE/M02086X/1), and E.H. was funded by the Alaska Climate Adaptation Science Center. We thank L. Füreder (Austria); the Ecuadorian Ministry of the Environment (research permit no. MAE-DNM-2015-0030), the Reserva Ecológica Antisana, Public Metropolitan Company of Potable Water and Sanitation of Quito (EPMAPS) and Water Projection Fund (FONAG) (Ecuador); the Parc National de la Vanoise (France); the Department of Conservation (New Zealand); and U. Fjellstyre and T. Buttingsrud (Norway) for permission to access field sites and work within protected areas. We also thank the Finse Alpine Research Centre, Obergurgl Alpine Research Centre and the Design School of the University of Leeds for the use of their field and laboratory facilities, and N. Friberg for his hospitality. For their assistance and support in the field, we thank P. Andino, R. Espinosa, P. Rosero and J. Sutherland, and S.C.F. gives special thanks to C. Fell and N. Fell.

Author information

Authors and Affiliations

Authors

Contributions

S.C.F. codeveloped the concept of the manuscript; completed fieldwork in Austria, New Zealand and Norway; assisted with the molecular lab work; ran the statistical analysis; created the figures (except Figs. 1 and 3) and wrote the manuscript. J.L.C. completed fieldwork in New Zealand and Norway and created Fig. 1. S.C.-F. completed fieldwork in Ecuador and France. V.C.-P. completed fieldwork in Ecuador. E.H. completed fieldwork in Alaska. K.C.R. led the molecular sample preparation and PCR and qPCR analysis, and contributed text to the ‘Molecular methods’ section. K.J.M.N. assisted in the molecular sample preparation. A.J.D. developed the analytical protocol for the molecular sample analysis, ran the NGS, formatted the subsequent data for analysis, advised on statistical and ecoinformatic analysis and contributed text to the ‘Molecular methods’ section. S.D.T. developed and advised on the use of the cotton-strip assay protocol, provided data for Fig. 3 and Supplementary Fig. 4, and contributed text regarding the use of the cotton-strip assay. L.E.B. codeveloped the concept of the manuscript, completed fieldwork in Austria and Norway, advised on statistical analysis and the production of all figures, created Fig. 3 and provided detailed comments on the manuscript. All authors edited and revised the manuscript.

Corresponding author

Correspondence to Lee E. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Luz Boyero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–4 and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fell, S.C., Carrivick, J.L., Cauvy-Fraunié, S. et al. Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nat. Clim. Chang. 11, 349–353 (2021). https://doi.org/10.1038/s41558-021-01004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01004-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene