Skip to main content

Advertisement

Log in

Moderate-to-vigorous intensity physical activity trajectories during adolescence and young adulthood predict adiposity in young adulthood: The Iowa Bone Development Study

  • Published:
Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

This study examined the associations of moderate-to-vigorous intensity physical activity (MVPA) trajectories in adolescence through young adulthood with adiposity in young adults. Participants from The Iowa Bone Development Study cohort were longitudinally assessed (N = 297; 57% female). Accelerometry-measured MVPA (min/day) at ages 15 through 23 years, and fat mass and visceral adipose tissue mass indices (kg/m2, g/m2) derived from dual-energy X-ray absorptiometry scans at age 23 years were analyzed. Latent trajectory analyses classified MVPA into two patterns. Multivariable linear regression analyses showed that being in the high MVPA trajectory group was associated with lower fat mass index z-scores. Individuals who were consistently active with high MVPA (vs. moderately active with decreasing MVPA) during adolescence up until early young adulthood had less accumulation of total body adiposity in young adulthood. This study suggests that adopting a consistently active lifestyle throughout adolescence can result in healthier body composition in young adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Block, G., Woods, M., Potosky, A., & Clifford, C. (1990). Validation of a self-administered diet history questionnaire using multiple diet records. Journal of Clinical Epidemiology, 43, 1327–1335.

    CAS  PubMed  Google Scholar 

  • Brage, S., Wedderkopp, N., Franks, P. W., Andersen, L. B., & Froberg, K. (2003). Reexamination of validity and reliability of the CSA monitor in walking and running. Medicine and Science in Sports and Exercise, 35, 1447–1454.

    PubMed  Google Scholar 

  • Carson, V., Rinaldi, R., Torrance, B., Maximova, K., Ball, G., Majumdar, S., & Wozny, P. (2014). Vigorous physical activity and longitudinal associations with cardiometabolic risk factors in youth. International Journal of Obesity, 38, 16–21.

    CAS  PubMed  Google Scholar 

  • Caspersen, C. J., Pereira, M. A., & Curran, K. M. (2000). Changes in physical activity patterns in the United States, by sex and cross-sectional age. Medicine and Science in Sports and Exercise, 32, 1601–1609.

    CAS  PubMed  Google Scholar 

  • Corder, K., Sharp, S. J., Atkin, A. J., Andersen, L. B., Cardon, G., Page, A., & Janz, K. F. (2016). Age-related patterns of vigorous-intensity physical activity in youth: The International Children’s Accelerometry Database. Preventive Medicine Reports, 4, 17–22.

    PubMed  PubMed Central  Google Scholar 

  • Craggs, C., Corder, K., Van Sluijs, E. M., & Griffin, S. J. (2011). Determinants of change in physical activity in children and adolescents: A systematic review. American Journal of Preventive Medicine, 40, 645–658.

    PubMed  PubMed Central  Google Scholar 

  • Crouter, S. E., DellaValle, D. M., Haas, J. D., Frongillo, E. A., & Bassett, D. R. (2013). Validity of ActiGraph 2-regression model, Matthews cut-points, and NHANES cut-points for assessing free-living physical activity. Journal of Physical Activity and Health, 10, 504–514.

    PubMed  Google Scholar 

  • Crouter, S. E., Kuffel, E., Haas, J. D., Frongillo, E. A., & Bassett, D. R., Jr. (2010). A refined 2-regression model for the actigraph accelerometer. Medicine and Science in Sports and Exercise, 42, 1029.

    PubMed  PubMed Central  Google Scholar 

  • Cullen, K. W., Watson, K., & Zakeri, I. (2008). Relative reliability and validity of the Block Kids Questionnaire among youth aged 10 to 17 years. Journal of the American Dietetic Association, 108, 862–866.

    CAS  PubMed  Google Scholar 

  • Dumith, S. C., Gigante, D. P., Domingues, M. R., & Kohl, H. W., III. (2011). Physical activity change during adolescence: A systematic review and a pooled analysis. International Journal of Epidemiology, 40, 685–698.

    PubMed  Google Scholar 

  • Ekelund, U., Luan, J., & a., Sherar, L. B., Esliger, D. W., Griew, P., Cooper, A., & Collaborators, I. C. s. A. D. . (2012). Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA, 307, 704–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, K. J., Abrams, S. A., & Wong, W. W. (1999). Monitoring childhood obesity: Assessment of the weight/height2 index. American Journal of Epidemiology, 150, 939–946.

    CAS  PubMed  Google Scholar 

  • Evenson, K. R., Catellier, D. J., Gill, K., Ondrak, K. S., & McMurray, R. G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26, 1557–1565.

    PubMed  Google Scholar 

  • Farooq, A., Martin, A., Janssen, X., Wilson, M. G., Gibson, A. M., Hughes, A., & Reilly, J. J. (2020). Longitudinal changes in moderate-to-vigorous-intensity physical activity in children and adolescents: A systematic review and meta-analysis. Obesity Reviews, 21, e12953.

    PubMed  Google Scholar 

  • Farooq, M. A., Parkinson, K. N., Adamson, A. J., Pearce, M. S., Reilly, J. K., Hughes, A. R., & Reilly, J. J. (2018). Timing of the decline in physical activity in childhood and adolescence: Gateshead Millennium Cohort Study. British Journal of Sports Medicine, 52, 1002–1006.

    PubMed  Google Scholar 

  • Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and Science in Sports and Exercise, 30, 777–781.

    CAS  PubMed  Google Scholar 

  • Gordon-Larsen, P., Nelson, M. C., & Popkin, B. M. (2004). Longitudinal physical activity and sedentary behavior trends: Adolescence to adulthood. American Journal of Preventive Medicine, 27, 277–283.

    PubMed  Google Scholar 

  • Gordon-Larsen, P., The, N. S., & Adair, L. S. (2010). Longitudinal trends in obesity in the United States from adolescence to the third decade of life. Obesity, 18, 1801–1804.

    PubMed  Google Scholar 

  • Guo, X., Warden, B., Paeratakul, S., & Bray, G. (2004). Healthy eating index and obesity. European Journal of Clinical Nutrition, 58, 1580–1586.

    CAS  PubMed  Google Scholar 

  • Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2017). Prevalence of obesity among adults and youth: United States, 2015–2016. Centers for Disease Control and Prevention (NCHS Data Brief), 288.

  • Hebden, L., Chey, T., & Allman-Farinelli, M. (2012). Lifestyle intervention for preventing weight gain in young adults: A systematic review and meta-analysis of RCTs. Obesity Reviews, 13, 692–710.

    CAS  PubMed  Google Scholar 

  • Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine and Science in Sports and Exercise, 32, S442–S449.

    CAS  PubMed  Google Scholar 

  • Janz, K. F., Boros, P., Letuchy, E. M., Kwon, S., Burns, T. L., & Levy, S. M. (2017). Physical activity, not sedentary time, predicts dual-energy X-ray absorptiometry-measured adiposity age 5 to 19 years. Medicine and Science in Sports and Exercise, 49, 2071–2077.

    PubMed  PubMed Central  Google Scholar 

  • Janz, K. F., Burns, T. L., & Levy, S. M. (2005). Tracking of activity and sedentary behaviors in childhood: The Iowa Bone Development Study. American Journal of Preventive Medicine, 29, 171–178.

    PubMed  Google Scholar 

  • Jones, B. L., & Nagin, D. S. (2007). Advances in group-based trajectory modeling and an SAS procedure for estimating them. Sociological Methods and Research, 35, 542–571.

    Google Scholar 

  • Katzmarzyk, P. T., Barreira, T. V., Broyles, S. T., Champagne, C. M., Chaput, J.-P., Fogelholm, M., & Kurpad, A. (2015). Physical activity, sedentary time, and obesity in an international sample of children. Medicine and Science in Sports and Exercise, 47, 2062–2069.

    PubMed  Google Scholar 

  • Katzmarzyk, P. T., Denstel, K. D., Beals, K., Bolling, C., Wright, C., Crouter, S. E., & Staiano, A. E. (2016). Results from the United States of America’s 2016 report card on physical activity for children and youth. Journal of Physical Activity and Health, 13, S307–S313.

    PubMed  Google Scholar 

  • Kelly, T. L., Wilson, K. E., & Heymsfield, S. B. (2009). Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE, 4, e7038.

    PubMed  PubMed Central  Google Scholar 

  • Kwon, S., Burns, T. L., Levy, S. M., & Janz, K. F. (2013). Which contributes more to childhood adiposity-high levels of sedentarism or low levels of moderate-through-vigorous physical activity? The Iowa Bone Development Study. The Journal of Pediatrics, 162, 1169–1174.

    PubMed  PubMed Central  Google Scholar 

  • Kwon, S., Janz, K. F., Letuchy, E. M., Burns, T. L., & Levy, S. M. (2015). Active lifestyle in childhood and adolescence prevents obesity development in young adulthood. Obesity, 23, 2462–2469.

    CAS  PubMed  Google Scholar 

  • Kwon, S., Janz, K. F., Letuchy, E. M., Burns, T. L., & Levy, S. M. (2017). Association between body mass index percentile trajectories in infancy and adiposity in childhood and early adulthood. Obesity, 25, 166–171.

    PubMed  Google Scholar 

  • Kyle, U. G., Schutz, Y., Dupertuis, Y. M., & Pichard, C. (2003). Body composition interpretation: Contributions of the fat-free mass index and the body fat mass index. Nutrition, 19, 597–604.

    PubMed  Google Scholar 

  • Lavie, C. J., Milani, R. V., Ventura, H. O., & Romero-Corral, A. (2010). Body composition and heart failure prevalence and prognosis: Getting to the fat of the matter in the “obesity paradox”. Paper presented at the mayo clinic proceedings.

  • Leenders, N., Nelson, T., & Sherman, W. (2003). Ability of different physical activity monitors to detect movement during treadmill walking. International Journal of Sports Medicine, 24, 43–50.

    CAS  PubMed  Google Scholar 

  • Li, K., Haynie, D., Lipsky, L., Iannotti, R. J., Pratt, C., & Simons-Morton, B. (2016). Changes in moderate-to-vigorous physical activity among older adolescents. Pediatrics, 138, e20161372.

    PubMed  PubMed Central  Google Scholar 

  • Liu, P., Ma, F., Lou, H., & Liu, Y. (2013). The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health, 13, 629.

    PubMed  PubMed Central  Google Scholar 

  • Maher, C. A., Mire, E., Harrington, D. M., Staiano, A. E., & Katzmarzyk, P. T. (2013). The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003-06. Obesity, 21, E730–E737.

    PubMed  Google Scholar 

  • Marques, A., Minderico, C., Martins, S., Palmeira, A., Ekelund, U., & Sardinha, L. B. (2016). Cross-sectional and prospective associations between moderate to vigorous physical activity and sedentary time with adiposity in children. International Journal of Obesity, 40, 28–33.

    CAS  PubMed  Google Scholar 

  • Mitchell, J., Pate, R., España-Romero, V., O’Neill, J., Dowda, M., & Nader, P. (2013). Moderate-to-vigorous physical activity is associated with decreases in body mass index from ages 9 to 15 years. Obesity, 21, E280–E286.

    CAS  PubMed  Google Scholar 

  • Murabito, J. M., Pedley, A., Massaro, J. M., Vasan, R. S., Esliger, D., Blease, S. J., & Fox, C. S. (2015). Moderate-to-vigorous physical activity with accelerometry is associated with visceral adipose tissue in adults. Journal of the American Heart Association, 4, e001379.

    PubMed  PubMed Central  Google Scholar 

  • Nader, P. R., Bradley, R. H., Houts, R. M., McRitchie, S. L., & O’Brien, M. (2008). Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA, 300, 295–305.

    CAS  PubMed  Google Scholar 

  • Nagin, D. S. (2005). Group-based modeling of development. London: Harvard University Press.

    Google Scholar 

  • Nagin, D. S., & Odgers, C. L. (2010). Group-based trajectory modeling in clinical research. Annual Review of Clinical Psychology, 6, 109–138.

    PubMed  Google Scholar 

  • Nanney, M. S., Lytle, L. A., Farbakhsh, K., Moe, S. G., Linde, J. A., Gardner, J. K., & Laska, M. N. (2015). Weight and weight-related behaviors among 2-year college students. Journal of American College Health, 63, 221–229.

    PubMed  Google Scholar 

  • Nelson, M. C., Story, M., Larson, N. I., Neumark-Sztainer, D., & Lytle, L. A. (2008). Emerging adulthood and college-aged youth: An overlooked age for weight-related behavior change. Obesity, 16, 2205–2211.

    PubMed  Google Scholar 

  • Niyonkuru, C., Wagner, A. K., Ozawa, H., Amin, K., Goyal, A., & Fabio, A. (2013). Group-based trajectory analysis applications for prognostic biomarker model development in severe TBI: A practical example. Journal of Neurotrauma, 30, 938–945.

    PubMed  Google Scholar 

  • Pate, R. R., Schenkelberg, M. A., Dowda, M., & McIver, K. L. (2019). Group-based physical activity trajectories in children transitioning from elementary to high school. BMC Public Health, 19, 323.

    PubMed  PubMed Central  Google Scholar 

  • Powell, K. E., King, A. C., Buchner, D. M., Campbell, W. W., DiPietro, L., Erickson, K. I., & Katzmarzyk, P. T. (2019). The scientific foundation for the Physical Activity Guidelines for Americans. Journal of Physical Activity and Health, 16, 1–11.

    Google Scholar 

  • Roeder, K., Lynch, K. G., & Nagin, D. S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association, 94, 766–776.

    Google Scholar 

  • Rosito, G., Massaro, J., & Hoffmann, U. (2008). Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The Framingham heart study. Circulation, 117, 605.

    PubMed  Google Scholar 

  • Schooling, C. M., Thomas, G. N., Leung, G. M., Ho, S. Y., Janus, E. D., & Lam, T. H. (2007). Is height associated with cardiovascular risk in Chinese adults? Epidemiology, 18, 274–278.

    PubMed  Google Scholar 

  • Smith, S. R., Lovejoy, J. C., Greenway, F., Ryan, D., deJonge, L., de la Bretonne, J., & Bray, G. A. (2001). Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism-Clinical and Experimental, 50, 425–435.

    CAS  PubMed  Google Scholar 

  • Togo, P., Osler, M., Sørensen, T. I., & Heitmann, B. (2001). Food intake patterns and body mass index in observational studies. International Journal of Obesity, 25, 1741–1751.

    CAS  PubMed  Google Scholar 

  • Toomey, C. M., Whittaker, J. L., Nettel-Aguirre, A., Reimer, R. A., Woodhouse, L. J., Ghali, B., & Emery, C. A. (2017). Higher fat mass is associated with a history of knee injury in youth sport. Journal of Orthopaedic and Sports Physical Therapy, 47, 80–87.

    Google Scholar 

  • Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40, 181.

    PubMed  Google Scholar 

  • VanItallie, T., Yang, M.-U., Heymsfield, S. B., Funk, R. C., & Boileau, R. A. (1990). Height-normalized indices of the body’s fat-free mass and fat mass: Potentially useful indicators of nutritional status. The American Journal of Clinical Nutrition, 52, 953–959.

    CAS  PubMed  Google Scholar 

  • Welk, G. (2002). Physical activity assessments for health-related research. New York: Human Kinetics.

    Google Scholar 

  • Yang, X., Telama, R., Viikari, J., & Raitakari, O. T. (2006). Risk of obesity in relation to physical activity tracking from youth to adulthood. Medicine and Science in Sports and Exercise, 38, 919.

    PubMed  Google Scholar 

  • Zook, K. R., Saksvig, B. I., Wu, T. T., & Young, D. R. (2014). Physical activity trajectories and multilevel factors among adolescent girls. Journal of Adolescent Health, 54, 74–80.

    Google Scholar 

Download references

Acknowledgements

We thank the study participants and staff of The Iowa Bone Development Study. We thank the study participants and staff of The Iowa Bone Development Study. This work was supported by the National Institutes of Health (R01-DE12101, R01-DE09551, M01-RR00059, UL1-RR024979, UL1-TR000442, and U54-TR001013), and research funds by the Roy J. Carver Charitable Trust and Delta Dental of Iowa Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara M. Whitaker.

Ethics declarations

Conflict of interest

Minsuk Oh, Dong Zhang, Kara M. Whitaker, Elena M. Letuchy, Kathleen F. Janz, and Steven M. Levy declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animal rights and Informed Consent

All procedures followed were in accordance with ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, M., Zhang, D., Whitaker, K.M. et al. Moderate-to-vigorous intensity physical activity trajectories during adolescence and young adulthood predict adiposity in young adulthood: The Iowa Bone Development Study. J Behav Med 44, 231–240 (2021). https://doi.org/10.1007/s10865-020-00190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10865-020-00190-x

Keywords

Navigation