Skip to main content
Log in

Particle rotation speeds up capillary interactions

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We use dynamic numerical simulations to investigate the role of particle rotation in pairwise capillary interactions of particles trapped at a fluid interface. The fluid interface is modeled with a phase-field method which is coupled to the Navier–Stokes equations to solve for the flow dynamics. Numerical solutions are found using a finite element scheme in a bounded two-dimensional geometry. The interfacial deformations are caused by the buoyant weight of the particles, which are allowed to both translate and rotate due to the capillary and viscous forces and torques at play. The results show that the capillary attraction is faster between freely rotating particles than if particle rotation is inhibited, and the higher the viscosity mismatch, the greater the effect. To explain this result, we analyze the drag force exerted on the particles and find that the translational drag force on a rotating particle is always less than its non-rotating counterpart due to attenuated velocity gradients in the vicinity of the particle. We also find that the influence of interfacial deformations on particle rotation is minute.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. V. Lotito, T. Zambelli, Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists. Adv. Colloid Interface Sci. 246, 217–274 (2017)

    Article  Google Scholar 

  2. P.A. Kralchevsky, K. Nagayama, Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85, 145–192 (2000)

    Article  Google Scholar 

  3. M. Oettel, S. Dietrich, Colloidal Interactions at Fluid Interfaces. Langmuir 24(4), 1425–1441 (2008)

    Article  Google Scholar 

  4. K.D. Danov, P.A. Kralchevsky, Capillary forces between particles at a liquid interface: general theoretical approach and interactions between capillary multipoles. Adv. Colloid Interface Sci. 154, 91–103 (2010)

    Article  Google Scholar 

  5. L. Botto, E.P. Lewandowski, M. Cavallaro Jr., K.J. Stebe, Capillary interactions between anisotropic particles. Soft Matter 8, 9957–9971 (2012)

    Article  ADS  Google Scholar 

  6. S. Dasgupta, T. Aust, G. Gompper, Nano- and microparticles at fluid and biological interfaces. J. Phys. Condens. Matter 29(37), 373003 (2017)

    Article  Google Scholar 

  7. I.B. Liu, N. Sharifi-Mood, K.J. Stebe, Capillary assembly of colloids: interactions on planar and curved interfaces. Annu. Rev. Condens. Matter Phys. 9, 283–305 (2018)

    Article  ADS  Google Scholar 

  8. R. McGorty, J. Fung, D. Kaz, V.N. Manoharan, Colloidal self-assembly at an interface. Mater. Today 13(6), 34–42 (2010)

    Article  Google Scholar 

  9. Q. Xie, G.B. Davies, J. Harting, Controlled capillary assembly of magnetic Janus particles at fluid–fluid interfaces. Soft Matter 12, 6566–6574 (2016)

    Article  ADS  Google Scholar 

  10. N.D. Vassileva, D. van den Ende, F. Mugele, J. Mellema, Capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21, 11190–11200 (2005)

    Article  Google Scholar 

  11. M.P. Boneva, N.C. Christov, K.D. Danov, P.A. Kralchevsky, Effect of electric-field induced capillary attraction on the motion of particles at an oil–water interface. Phys. Chem. Chem. Phys. 9, 6371–6384 (2007)

    Article  Google Scholar 

  12. M.P. Boneva, K.D. Danov, N.C. Christov, P.A. Kralchevsky, Attraction between particles at a liquid interface due to the interplay of gravity- and electric-field-induced interfacial deformations. Langmuir 25(16), 9129–9139 (2009)

    Article  Google Scholar 

  13. A. Dani, G. Keiser, M. Yeganeh, C. Maldarelli, Hydrodynamics of particles at an oil–water interface. Langmuir 31, 13290–13302 (2015)

    Article  Google Scholar 

  14. P. Singh, D.D. Joseph, Fluid dynamics of floating particles. J. Fluid Mech. 530, 31–80 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Dörr, S. Hardt, Driven particles at fluid interfaces acting as capillary dipoles. J. Fluid. Mech. 770, 5–26 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.M. Kaz, R. McGorty, M. Mani, M.P. Brenner, V.N. Manoharan, Physical ageing of the contact line on colloidal particles at liquid interfaces. Nat. Mater. 11, 138–142 (2012)

    Article  ADS  Google Scholar 

  17. A.M. Rahmani, A. Wang, V.N. Manoharan, C.E. Colosqui, Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics. Soft Matter 12, 6365–6372 (2016)

    Article  ADS  Google Scholar 

  18. S. Das, J. Koplik, R. Farinato, D.R. Nagaraj, C. Maldarelli, P. Somasundaran, The translational and rotational dynamics of a colloid moving along the air-liquid interface of a thin film. Sci. Rep. 8, 8910 (2018)

    Article  ADS  Google Scholar 

  19. P. Seppecher, Moving contact lines in the Cahn–Hilliard theory. Int. J. Eng. Sci. 34(9), 977–992 (1996)

    Article  MathSciNet  Google Scholar 

  20. D. Jacqmin, Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Qian, X.P. Wang, P. Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1, 1–52 (2006)

    MATH  Google Scholar 

  22. P. Yue, C. Zhou, J.J. Feng, Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279–294 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12, 841–886 (2012)

    Article  Google Scholar 

  24. J.C. Loudet, M. Qiu, J. Hemauer, J.J. Feng, Drag force on a particle straddling a fluid interface: Influence of interfacial deformations. Eur. Phys. J. E 43, 13 (2020). https://doi.org/10.1140/epje/i2020-11936-1

  25. D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Yue, J.J. Feng, C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. F. Pigeonneau, E. Hachem, P. Saramito, Discontinuous Galerkin finite element method applied to the coupled unsteady Stokes/Cahn-Hilliard equations. Int. J. Numer. Meth. Fluids 90, 267–295 (2019)

    Article  MathSciNet  Google Scholar 

  28. P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219, 47–67 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. P. Singh, T.I. Hesla, The interfacial torque on a partially submerged sphere. J. Colloid Interface Sci. 280, 542–543 (2004)

    Article  ADS  Google Scholar 

  30. COMSOL Multiphysics® v. 5.4 reference manual. https://www.comsol.com/documentation. COMSOL AB, Stockholm, Sweden

  31. A. Khalili, B. Liu, Stokes’ paradox: creeping flow past a two-dimensional cylinder in an infinite domain. J. Fluid Mech. 817, 374–387 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Koplik, C. Maldarelli, Diffusivity and hydrodynamic drag of nanoparticles at a vapor–liquid interface. Phys. Rev. Fluids 2, 024303 (2017)

    Article  ADS  Google Scholar 

  33. W.M. Deen, Analysis of Transport Phenomena (Oxford University Press, Oxford, 1998)

    Google Scholar 

  34. K.D. Danov, R. Dimova, B. Pouligny, Viscous drag of a solid sphere straddling a spherical or flat interface. Phys. Fluids 12, 2711–2722 (2000)

    Article  ADS  Google Scholar 

  35. S. Nawar, J.K. Stolaroff, C. Ye, H. Wu, D.T. Nguyen, F. Xin, D.A. Weitz, Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab Chip 20, 147–154 (2020)

    Article  Google Scholar 

  36. M. Oettel, A. Domínguez, M. Tasinchevych, S. Dietrich, Effective interactions of colloids on nematic films. Eur. Phys. J. E 28, 99–111 (2009)

    Article  Google Scholar 

  37. I.B. Liu, M.A. Gharbi, V.L. Ngo, R.D. Kamien, S. Yang, K.J. Stebe, Elastocapillary interactions on nematic films. Proc. Natl. Acad. Sci. USA 112, 6336–6340 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the EU Marie-Curie fellowship “CoPEC” under Grant No. 794837–H2020-MSCA-IF-2017 and by the NSERC Discovery Grant No. 2019-04162. One of us (J.-C.L.) is also indebted to the University of Bordeaux for further financial support thanks to the IdEx program entitled “Développement des carrières - Volet personnel de recherche.” We acknowledge CMC Microsystems for software licensing. The IT staff of the Mathematics department of the University of British Columbia is also gratefully acknowledged for their valuable help and support.

Author information

Authors and Affiliations

Authors

Contributions

J-CL and JJF designed the research. J-CL and JH performed the work; all authors analyzed the data, interpreted the results and collaborated to the manuscript written by J-CL.

Corresponding author

Correspondence to J.-C. Loudet.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1025 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemauer, J., Qiu, M., Feng, J.J. et al. Particle rotation speeds up capillary interactions. Eur. Phys. J. E 44, 30 (2021). https://doi.org/10.1140/epje/s10189-021-00025-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00025-w

Navigation