Skip to main content
Log in

Confinement of the antitumoral drug cisplatin inside edge-functionalized carbon nanotubes and its release near lipid membrane

  • Regular Article - Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Platinum complexes are active antitumor agents. They are widely used in chemotherapy medication for the treatment of several cancer types. Unfortunately, these drugs present poor stability when administered and have several side effects, damaging healthy cells around the tumor. One way to remedy the damage is to confine drug molecules in carbon cages such as carbon nanotubes (CNTs) before delivering them near their target cells. In order to open their ends, the CNTs must be functionalized by oxidation. This leads to the saturation of the carbon dangling bonds with an alcohol functional group, for instance. In this study, molecular dynamics simulations are carried out to assess the influence of CNT’s chemical functional groups (–H, –OH, –COOH) on the retention time and release processes of cisplatin molecules throughout the process of vectorization to a cell membrane.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Author’s comment: All data and models that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105 (2006)

    Article  Google Scholar 

  2. S. Manzetti, Adv. Manuf. 1, 198 (2013)

    Article  Google Scholar 

  3. A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, A. Rousset, Carbon 39, 507 (2001)

    Article  Google Scholar 

  4. V.V. Chaban, O.V. Prezhdo, ACS Nano 5, 5647 (2011)

    Article  Google Scholar 

  5. X. Pan, X. Bao, Acc. Chem. Res. 44, 553 (2011)

    Article  Google Scholar 

  6. N. Naguib, H. Ye, Y. Gogotsi, A.G. Yazicioglu, C.M. Megaridis, M. Yoshimura, Nano Lett. 4, 2237 (2004)

    Article  ADS  Google Scholar 

  7. W.F. Gtari, B. Tangour, Int. J. Quantum Chem. 113, 2397 (2013)

    Article  Google Scholar 

  8. S. Lee, K.-S. Park, Y.C. Choi, Y. Park, J.M. Bok, D.J. Bae, K.-S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, Y.H. Lee, Synth. Met. 113, 209–216 (2000)

    Article  Google Scholar 

  9. H. Dodziuk, G. Dolgonos, Chem. Phys. Lett. 356, 79 (2002)

    Article  ADS  Google Scholar 

  10. T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, Y. Iwasa, Nat. Mater. 2, 683 (2003)

    Article  ADS  Google Scholar 

  11. L. Schlapbach, A. Züttel, Nature 414, 353 (2001)

    Article  ADS  Google Scholar 

  12. H.-M. Cheng, C. Yuan, C. Liu, Carbon 39, 1447 (2001)

    Article  Google Scholar 

  13. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997)

    Article  ADS  Google Scholar 

  14. W.F. Gtari, B. Tangour, Can. J. Chem. 94, 15 (2016)

    Article  Google Scholar 

  15. M. Martincic, G. Tobias, Expert Opin. Drug Deliv. 12, 563 (2015)

    Article  Google Scholar 

  16. Z. Khatti, S.M. Hashemianzadeh, S.A. Shafiei, Adv. Pharm. Bull. 8, 163 (2018)

    Article  Google Scholar 

  17. L. Zhang, G. Peng, J. Li, L. Liang, Z. Kong, H. Wang, L. Jia, X. Wang, W. Zhang, J.-W. Shen, J. Mol. Liq. 262, 295 (2018)

    Article  Google Scholar 

  18. M. Pakdel, H. Raissi, M. Shahabi, J. Biomol. Struct. Dyn. 38, 1488 (2020)

    Article  Google Scholar 

  19. M. Yoosefian, S. Sabaei, N. Etminan, Comput. Biol. Med. 114, 103433 (2019)

    Article  Google Scholar 

  20. J. Chen, D. Mao, X. Wang, G. Zhou, S. Zeng, L. Chen, C. Dai, S. Feng, J. Phys. Chem. C 123, 9567 (2019)

    Article  Google Scholar 

  21. K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima, M. Yudasaka, ACS Nano 2, 2057 (2008)

    Article  Google Scholar 

  22. A. Rajeswaran, A. Trojan, B. Burnand, M. Giannelli, Lung Cancer 59, 1 (2008)

    Article  Google Scholar 

  23. A.M. Florea, D. Büsselberg, Cancers 3, 1351 (2011)

    Article  Google Scholar 

  24. S. Seng, Z. Liu, S.K. Chiu, T. Proverbs-Singh, G. Sonpavde, T.K. Choueiri, C.K. Tsao, M. Yu, N.M. Hahn, W.K. Oh, M.D. Galsky, J. Clin. Oncol. 30, 4416 (2012)

    Article  Google Scholar 

  25. W. Koizumi, H. Narahara, T. Hara, A. Takagane, T. Akiya, M. Takagi, K. Miyashita, T. Nishizaki, O. Kobayashi, W. Takiyama, Y. Toh, T. Nagaie, S. Takagi, Y. Yamamura, K. Yanaoka, H. Orita, M. Takeuchi, Lancet Oncol. 9, 215 (2008)

    Article  Google Scholar 

  26. S. Guo, Y. Wang, L. Miao, Z. Xu, C.M. Lin, Y. Zhang, L. Huang, ACS Nano 7, 9896 (2013)

    Article  Google Scholar 

  27. C.A. Rabik, M.E. Dolan, Cancer Treat. Rev. 33, 9 (2007)

    Article  Google Scholar 

  28. K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Clin. Cancer Res. 14, 1310 (2008)

    Article  Google Scholar 

  29. S.D. Brown, P. Nativo, J.A. Smith, D. Stirling, P.R. Edwards, B. Venugopal, D.J. Flint, J.A. Plumb, D. Graham, N.J. Wheate, J. Am. Chem. Soc. 132, 4678 (2010)

    Article  Google Scholar 

  30. D. Pissuwan, T. Niidome, M.B. Cortie, J. Control. Release 149, 65 (2011)

    Article  Google Scholar 

  31. L. Vigderman, E.R. Zubarev, Adv. Drug Deliv. Rev. 65, 663 (2013)

    Article  Google Scholar 

  32. H. Besrour, B. Tangour, R. Linguerri, M. Hochlaf, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 217, 278 (2019)

    Article  ADS  Google Scholar 

  33. G. Ciofani, V. Raffa, A. Menciassi, P. Dario, J. Nanosci. Nanotechnol. 8, 6223 (2008)

    Article  Google Scholar 

  34. G. Ciofani, Expert Opin. Drug Deliv. 7, 889 (2010)

    Article  Google Scholar 

  35. Y. Belmiloud, W. Djitli, H. Abdeldjebar, M. Abdelatif, B. Tangour, B. Meziane, Superlattices Microstruct. 101, 547–558 (2016)

    Article  ADS  Google Scholar 

  36. E. Duverger, T. Gharbi, E. Delabrousse, F. Picaud, Phys. Chem. Chem. Phys. 16, 18425 (2014)

    Article  Google Scholar 

  37. S. Roosta, S.J. Nikkhah, M. Sabzali, S.M. Hashemianzadeh, RSC Adv. 6, 9344 (2016)

    Article  ADS  Google Scholar 

  38. M. El Khalifi, E. Duverger, T. Gharbi, H. Boulahdour, F. Picaud, Phys. Chem. Chem. Phys. 17, 30057 (2015)

    Article  Google Scholar 

  39. M. El Khalifi, E. Duverger, T. Gharbi, H. Boulahdour, F. Picaud, Anal. Methods 8, 1367 (2016)

    Article  Google Scholar 

  40. M. El Khalifi, J. Bentin, E. Duverger, T. Gharbi, H. Boulahdour, F. Picaud, Phys. Chem. Chem. Phys. 18, 24994 (2016)

    Article  Google Scholar 

  41. A. Mejri, D. Vardanega, B. Tangour, T. Gharbi, F. Picaud, J. Phys. Chem. B 119, 604 (2015)

    Article  Google Scholar 

  42. T.A. Hilder, J.M. Hill, Curr. Appl. Phys. 8, 258 (2008)

    Article  ADS  Google Scholar 

  43. R. Bessrour, Y. Belmiloud, Z. Hosni, B. Tangour, AIP Conf. Proc. 1456, 229 (2012)

    Article  ADS  Google Scholar 

  44. A. Bianco, M. Prato, Adv. Mater. 15, 1765 (2003)

    Article  Google Scholar 

  45. Z. Hosni, R. Bessrour, B. Tangour, J. Comput. Theor. Nanosci. 11, 318 (2014)

    Article  Google Scholar 

  46. A. Chu, J. Cook, R.J.R. Heesom, J.L. Hutchison, M.L.H. Green, J. Sloan, Chem. Mater. 8, 2751 (1996)

    Article  Google Scholar 

  47. S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372, 159 (1994)

    Article  ADS  Google Scholar 

  48. Z. Wang, M.D. Shirley, S.T. Meikle, R.L.D. Whitby, S.V. Mikhalovsky, Carbon 47, 73 (2009)

    Article  Google Scholar 

  49. E. Heister, C. Lamprecht, V. Neves, C. Tîlmaciu, L. Datas, E. Flahaut, B. Soula, P. Hinterdorfer, H.M. Coley, S.R. Silva, J. McFadden, ACS Nano 4, 2615 (2010)

    Article  Google Scholar 

  50. H. Lee, S. Mall, V. Nalladega, S. Sathish, A. Roy, K. Lafdi, Polym. Polym. Compos. 14, 549 (2006)

    Google Scholar 

  51. K.A. Worsley, I. Kalinina, E. Bekyarova, R.C. Haddon, J. Am. Chem. Soc. 131, 18153 (2009)

    Article  Google Scholar 

  52. P. Mark, L. Nilsson, J. Phys. Chem. A 105, 9954 (2001)

    Article  Google Scholar 

  53. A.D. Becke, J. Chem. Phys. 98, 1372 (1993)

    Article  ADS  Google Scholar 

  54. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  55. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 59, 1200 (1980)

    Article  ADS  Google Scholar 

  56. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  Google Scholar 

  57. W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972)

    Article  ADS  Google Scholar 

  58. C.E. Check, T.O. Faust, J.M. Bailey, B.J. Wright, T.M. Gilbert, L.S. Sunderlin, J. Phys. Chem. A 105, 8111 (2001)

    Article  Google Scholar 

  59. L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, J. Comput. Phys. 151, 283 (1999)

    Article  ADS  Google Scholar 

  60. A.B. Farimani, Y. Wu, N.R. Aluru, Phys. Chem. Chem. Phys. 15, 17993 (2013)

    Article  Google Scholar 

  61. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  62. F. Sajadi, C.N. Rowley, PeerJ 6, e5472 (2018)

    Article  Google Scholar 

  63. L. Lindsay, D.A. Broido, Phys. Rev. B 82, 209903 (2010)

    Article  ADS  Google Scholar 

  64. C.E. Faller, K.A. Reilly, R.D. Hills Jr., O. Guvench, J. Phys. Chem. B 117, 518 (2013)

    Article  Google Scholar 

  65. D. Rodriguez-Gomez, E. Darve, A. Pohorille, J. Chem. Phys. 120, 3563 (2004)

    Article  ADS  Google Scholar 

  66. J. Hénin, G. Fiorin, C. Chipot, M.L. Klein, J. Chem. Theory Comput. 6, 35 (2010)

    Article  Google Scholar 

  67. E. Darve, D. Rodríguez-Gómez, A. Pohorille, J. Chem. Phys. 128, 144120 (2008)

    Article  ADS  Google Scholar 

  68. H. Sun, Y. Li, D. Li, T. Hou, J. Chem. Inf. Model. 53, 2376 (2013)

    Article  Google Scholar 

  69. I. Pires de Oliveira, C.H. Lescano, G. De Nucci, Chem. Biol. Drug Des. 93, 419 (2019)

    Article  Google Scholar 

  70. H. Wang, X. Ren, F. Meng, Mol. Simul. 42, 56 (2016)

    Article  Google Scholar 

  71. N.K. Khadka, X. Cheng, C.S. Ho, J. Katsaras, J. Pan, Biophys. J. 108, 2492 (2015)

    Article  ADS  Google Scholar 

  72. C. Tripisciano, S. Costa, R.J. Kalenczuk, E. Borowiak-Palen, Eur. Phys. J. B 75, 141 (2010)

    Article  ADS  Google Scholar 

  73. A. Guven, I.A. Rusakova, M.T. Lewis, L.J. Wilson, Biomaterials 33, 1455 (2012)

    Article  Google Scholar 

  74. L.A. De Souza, H.F. Dos Santos, L.T. Costa, W.B. De Almeida, J. Inorg. Biochem. 178, 134 (2018)

    Article  Google Scholar 

  75. A.A. Bhirde, A.A. Sousa, V. Patel, A.A. Azari, J.S. Gutkind, R.D. Leapman, J.F. Rusling, Nanomedicine 4, 763 (2009)

    Article  Google Scholar 

  76. E. Mehrjouei, H. Akbarzadeh, A.N. Shamkhali, M. Abbaspour, S. Salemi, P. Abdi, Mol. Pharm. 14, 2273 (2017)

    Article  Google Scholar 

  77. P. Wolski, K. Nieszporek, T. Panczyk, Phys. Chem. Chem. Phys. 19, 9300 (2017)

    Article  Google Scholar 

  78. P. Wolski, K. Nieszporek, T. Panczyk, Langmuir 34, 2543 (2018)

    Article  Google Scholar 

  79. J.S. Camp, D.S. Sholl, J. Phys. Chem. C 120, 1110 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Calculations were performed with the supercomputer regional facility Mesocenter of the University of Franche-Comté.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Alia Mejri.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejri, A., Tangour, B., Herlem, G. et al. Confinement of the antitumoral drug cisplatin inside edge-functionalized carbon nanotubes and its release near lipid membrane. Eur. Phys. J. D 75, 99 (2021). https://doi.org/10.1140/epjd/s10053-021-00114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00114-7

Navigation