Skip to main content
Log in

3D random virtual antenna arrays for FANETs wireless links

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel virtual array for FANETs wireless links at the frequency of 2.4 GHz. The proposed design considers a 3D random topology for eight nodes of a FANET. The main novelty is that each node is now composed of a rectangular patch antenna mounted on a realistic aircraft structure. This permits us to have a more precise performance of the radiation pattern. The optimum node locations compensate for the interference caused by the aircraft structures. The design problem is formulated to optimize the node locations by utilizing the Differential Evolution method for Multi-objective Optimization. Simulation results are provided in directivity and sidelobe level and compared concerning the most common antenna arrays topologies such as linear, circular, rectangular, and cubic array. The maximum aperture size of the virtual array is 20λ for providing a directivity value of 13.6 dBi with a side lobe level of 7.82dBi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NA:

Number of nodes

P(θ,φ):

Radiation pattern

Gn(θ,φ):

Element pattern

k:

Number of wave

xn, yn, zn :

Node location coordinates

λ:

Wavelength

ε r :

Permitivity

Ls :

38 mm

Ws :

44.06 mm

Lc :

28.4 mm

Wc :

37.02 mm

Hc :

2.88 mm

C1 :

1 mm

Db :

196.98 mm

Dc :

58.37 mm

S 11 :

Reflection coefficient

Q :

Desition variables matrix

q m :

Mth individual

xm n, ym n, zm n :

Node location coordinates from the mth individual

SLLmin :

Side lobe level

D:

Directivity

qa, qb, qc :

Selected individuals

qnew :

New individual candidate

qnew1 :

New individual candidate after crossover

qnew2 :

New individual candidate after crossover

F:

Scaling factor of 0.5

prb:

Crossover probability

mut:

Mutation probability

Smin :

Minimum spacing among nodes

References

  1. Bürkle, A., Segor, F., & Kollmann, M. (2011). Towards autonomous micro UAV swarms. Journal of Intelligent and Robotic Systems, 61(1–4), 339–353.

    Article  Google Scholar 

  2. Sivakumar, A., & Tan, C. K. Y. (2010). UAV swarm coordination using cooperative control for establishing a wireless communications backbone. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Vol. 3 (pp. 1157-1164).

  3. Clare, L. P., Gao, J. L., Jennings, E. H., & Okino, C. (2005). A network architecture for precision formation flying using the IEEE 802.11 MAC protocol. In 2005 IEEE Aerospace Conference (pp. 1335-1347). IEEE.

  4. Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.

    Article  Google Scholar 

  5. Imai, S., Blasch, E., Galli, A., Zhu, W., Lee, F., & Varela, C. A. (2017). Airplane flight safety usingerror-tolerant data stream processing. IEEE Aerospace and Electronic Systems Magazine, 32, 4–17.

    Article  Google Scholar 

  6. Sharawi, M. S., Ibrahim, M., Deif, S., & Aloi, D. N. (2013). A planar printed antenna array embedded in the wing structure of a UAV for communication link enhancement. Progress In Electromagnetics Research, 138, 697–715.

    Article  Google Scholar 

  7. Dweik, S., Deif, S., Sadeh, W., Rawashdeh, O. A., Aloi, D. N., & Sharawi, M. S. (2014). A planar antenna array with integrated feed network for UAV applications. In The 8th European Conference on Antennas and Propagation (EuCAP 2014) (pp. 1855-1858). IEEE.

  8. Wei, Z., & Junfeng, Y. (2017). A design of vertical polarized conformal antenna and its array based on UAV structure. International Journal of Antennas and Propagation. https://doi.org/10.1155/2017/9769815

    Article  Google Scholar 

  9. Gong, Z., Ge, S., Guo, T., Zhang, Q., & Chen, Y. (2017). A compact planar 24GHz quasi-Yagi antenna for unmanned aerial vehicle radar applications. In 2017 IEEE International Conference on Computational Electromagnetics (ICCEM) (pp. 104-105). IEEE.

  10. Sharawi, M. S., Daniel, N. A., & Osamah, A. R. (2010). Design and implementation of embedded printed antenna arrays in small UAV wing structures. IEEE Transactions on Antennas and Propagation, 58(8), 2531–2538.

    Article  Google Scholar 

  11. Dohler, M., & Aghvami, A. H. (2006). Distributed antennas: The concept of virtual antenna arrays. In Cooperation in Wireless Networks: Principles and Applications (pp. 421-461). Springer, Dordrecht.

  12. Dohler, M., Lefranc, E., & Aghvami, H. (2002). Space-time block codes for virtual antenna arrays. In The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Vol. 1, pp. 414-417). IEEE.

  13. Mghabghab, S., Schlegel, A., Gress, R., & Nanzer, J. A. (2020). Long-range wireless frequency synchronization for distributed phased arrays. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (pp. 1253-1254). IEEE.

  14. Chatterjee, P., Nanzer, J. A., & Yan, M. (2020). Frequency Consensus for Distributed Antenna Arrays With Half-Duplex Wireless Coordination. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (pp. 1585-1586). IEEE.

  15. Robic, T., & Bogdan, F. (2005). DEMO: Differential evolution for multiobjective optimization. Lecture Notes in Computer Science, EMO, 3410, 520–533.

    Article  Google Scholar 

  16. Bray, M. G., Werner, D. H., Boehringer, D. W., & Machuga, D. W. (2002). Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning. IEEE Transactions on Antennas and Propagation, 50, 1732–1742.

    Article  Google Scholar 

  17. Rocha, C., Covarrubias, D. H., Brizuela, C., & Panduro, M. A. (2007). Differential evolution applied to side lobe level reduction on a planar array. International Journal of Electronics and Communications, 61(5), 286–290.

    Article  Google Scholar 

  18. Panduro, M. A., Brizuela, C. A., Garza, J., Hinojosa, S., & Reyna, A. (2013). A comparison of NSGA-II, DEMO, and EM-MOPSO for the multi-objective design of concentric rings antenna arrays. Journal of Electromagnetic Waves and Applications, 27(9), 1100–1113.

    Article  Google Scholar 

  19. Garza, J., Panduro, M. A., Reyna, A., Covarrubias, D. H., & Brizuela, C. (2018). Synthesis of a scannable pattern for 3D cubic antenna arrays. IETE Technical Review, 35(6), 581–589.

    Article  Google Scholar 

  20. Keskin, F., & Filik, T. (2020). Isotropic and Directional DOA Estimation of the Target by UAV Swarm-based 3-D Antenna Array. In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-7). IEEE.

  21. Garza, J., Panduro, M. A., Reyna, A., Romero, G., & Rio, C. D. (2016). Design of UAVs-based 3D antenna arrays for a maximum performance in terms of directivity and SLL. International Journal of Antennas and Propagation. https://doi.org/10.1155/2016/2621862

    Article  Google Scholar 

  22. Wang, W., Zheng, Z., Chen, M., Zhang, H., & Liang, X. (2020). An Unmanned Aerial Vehicle Antenna Array. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (pp. 183-184). IEEE.

  23. Reyna, A., Panduro, M. A., Mendez, A., Balderas, L., & Del-Río, C. (2019). Distributed Antenna Array for FANET’s Wireless Links Using Time Modulation. In 2019 13th European Conference on Antennas and Propagation (EuCAP) (pp. 1–3). IEEE.

  24. Fouda, A., Ibrahim, A. S., Güvenç, Í., & Ghosh, M. (2019). Interference management in UAV-assisted integrated access and backhaul cellular networks. IEEE Access, 7, 104553–104566.

    Article  Google Scholar 

  25. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2018). Drone-based antenna array for service time minimization in wireless networks. In 2018 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.

  26. Sun, G., et al. (2020). Improving performance of distributed collaborative beamforming in mobile wireless sensor networks: a multi-objective optimization method. IEEE Internet of Things Journal

  27. Dohler, M., Dominguez, J., & Aghvami, H. (2002). Link capacity analysis for virtual antenna arrays. In Proceedings IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada (Vol. 1, pp. 440-443). IEEE.

  28. Wang, W.-Q. (2012). Virtual antenna array analysis for MIMO synthetic aperture radars. Int J Anten Propaga, 2012(587276), 10.

    Google Scholar 

  29. Jan, S. S., & Enge, P. (2000). Using GPS to synthesize a large antenna aperture when the elements are mobile. In Proceedings of the 2000 National Technical Meeting of The Institute of Navigation, Anaheim, CA, (pp. 1-11).

  30. Breheny, S. H., D'Andrea, R., & Miller, J. C. (2003). Using airborne vehicle-based antenna arrays to improve communications with UAV clusters. In 42nd IEEE International Conference on Decision and Control (Vol. 4, pp. 4158-4162). IEEE.

  31. Chandra, R. S., Breheny, S. H., & D’Andrea, R. (2008). Antenna array synthesis with clusters of unmanned aerial vehicles. Automatica, 44(8), 1976–1984.

    Article  Google Scholar 

  32. Balanis, C. (2005). Antenna theory-analysis and design (3rd ed.). Wiley.

    Google Scholar 

  33. Commercial Software available at https://www.cst.com

  34. Pang, T., (2016). Design, prototyping and autonomous control of gasoline-engine variable-pitch quadcopter. Diss.

  35. Deb, Kal. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). Wiley.

    Google Scholar 

  36. Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Reyna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyna, A., Garza, J.C., Elizarraras, O. et al. 3D random virtual antenna arrays for FANETs wireless links. Telecommun Syst 77, 469–477 (2021). https://doi.org/10.1007/s11235-021-00774-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00774-1

Keywords

Navigation