Skip to main content
Log in

Numerical simulation of a shock–helium bubble interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We solve the Euler equations to compute the interaction of a Mach 1.22 shock wave with a helium bubble contaminated by 28% air by mass. A ninth-order upwind scheme is used to calculate the left and the right states of the primitive variables as required by the AUSMD algorithm. The low numerical dissipation of the AUSMD algorithm makes it an ideal choice for computing long-time behavior of the bubble after the shock passes over it. The algorithm combines well with the high spectral accuracy of the ninth-order upwind scheme. The basic trends in the evolving bubble match with earlier experimental and numerical observations. Effect of numerical schemes and grid sizes is also observed for this study. The Euler solver captures a large number of small-scale rolled-up vortices originally generated by the baroclinic torque term in the vorticity transport equation and later enhanced by the Kelvin–Helmholtz instability. Numerical schlieren, mass fraction, and vorticity contour plots are used to visualize the turbulent mixing zone that is a key feature of the translating and deforming bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Layes, G., Jourdan, G., Houas, L.: Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21(074102), 1–13 (2009). https://doi.org/10.1063/1.3176474

    Article  MATH  Google Scholar 

  2. Brouillette, M.: The Richtmyer–Meshkov Instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002). https://doi.org/10.1146/annurev.fluid.34.090101.162238

    Article  MathSciNet  MATH  Google Scholar 

  3. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297 (1960). https://doi.org/10.1002/cpa.3160130207

    Article  MathSciNet  Google Scholar 

  4. Meshkov, Y.Y.: Instability of shock wave accelerated between two gases. NASA TT (1970). https://doi.org/10.1007/BF01015969

    Article  Google Scholar 

  5. Markstein, G.H.: A shock tube study of the flame front-pressure wave interaction. 6th International Symposium on Combustion, Reinhold, New York, pp 387–398 (1957). https://doi.org/10.1016/S0082-0784(57)80054-X

  6. Rudinger, G., Somers, L.M.: Behavior of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960). https://doi.org/10.1017/S0022112060001419

    Article  MATH  Google Scholar 

  7. Haas, J.-F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical inhomogeneities. J. Fluid Mech. 181, 41–76 (1987). https://doi.org/10.1017/S0022112087002003

    Article  Google Scholar 

  8. Tomkins, C., Kumar, S., Orlicz, G., Prestridge, K.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008). https://doi.org/10.1017/S0022112008002723

    Article  MATH  Google Scholar 

  9. Vetter, M., Sturtevant, B.: Experiments on the Richtmyer–Meshkov instability of an air/SF\(_{6}\) interface. Shock Waves 4, 247–252 (1995). https://doi.org/10.1007/BF01416035

    Article  Google Scholar 

  10. Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 318, 129–163 (1996). https://doi.org/10.1017/S0022112096007069

    Article  MATH  Google Scholar 

  11. Zhai, Z., Si, T., Luo, X., Yang, J.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23(084104), 1–11 (2011). https://doi.org/10.1063/1.3623272

    Article  Google Scholar 

  12. Haehn, N., Weber, C., Oakley, J., Anderson, M., Ranjan, D., Bonazza, R.: Experimental study of the shock-bubble interaction with reshock. Shock Waves 21, 225–231 (2011). https://doi.org/10.1007/s00193-011-0299-x

    Article  Google Scholar 

  13. Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys. Rev. Lett. 98(024502), 1–4 (2007). https://doi.org/10.1103/PhysRevLett.98.024502

    Article  Google Scholar 

  14. Ranjan, D., Niederhaus, J.H.J., Oakley, J.G., Anderson, M.H., Bonazza, R., Greenough, J.A.: Shock bubble intercations : features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20(036101), 1–20 (2008). https://doi.org/10.1063/1.2840198

    Article  MATH  Google Scholar 

  15. Bagabir, A., Drikakis, D.: Mach number effects on shock–bubble interaction. Shock Waves 11, 209–218 (2001). https://doi.org/10.1007/PL00004076

    Article  MATH  Google Scholar 

  16. Hejazialhosseini, B., Rossinelli, D., Koumoutsakos, P.: Vortex dynamics in 3D shock–bubble interaction. Phys. Fluids 25(110816), 1–8 (2013). https://doi.org/10.1063/1.4819345

    Article  Google Scholar 

  17. Rybakin, B., Goryachev, V.: The supersonic shock wave interaction with low-density gas bubble. Acta Astronaut. 94, 749–753 (2014). https://doi.org/10.1016/j.actaastro.2013.09.002

    Article  Google Scholar 

  18. Zhai, Z., Wang, M., Si, T., Luo, X.: On the interaction of a planer shock with a light polygonal interface. J. Fluid Mech. 757, 800–816 (2014). https://doi.org/10.1017/jfm.2014.516

    Article  Google Scholar 

  19. Si, T., Long, T., Zhai, Z., Luo, X.: Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225–251 (2015). https://doi.org/10.1017/jfm.2015.581

    Article  Google Scholar 

  20. Luo, X., Wang, M., Si, T., Zhai, Z.: On the interaction of a planer shock with an \(\text{ SF}_{{6}}\) polygon. J. Fluid Mech. 773, 366–394 (2015). https://doi.org/10.1017/jfm.2015.257

    Article  Google Scholar 

  21. Zou, L., Liu, C., Tan, D., Huang, W., Luo, X.: On interaction of shock wave with elliptic gas cylinder. J. Vis. 13, 347–353 (2010). https://doi.org/10.1007/s12650-010-0053-y

    Article  Google Scholar 

  22. Georgievskiy, P.Y., Levin, V.A., Sutyrin, O.G.: Interaction of a shock with elliptical gas bubbles. Shock Waves 25, 357–369 (2015). https://doi.org/10.1007/s00193-015-0557-4

    Article  Google Scholar 

  23. Lindl, J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 11(2), 3933–4024 (1995). https://doi.org/10.1063/1.871025

    Article  Google Scholar 

  24. Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011). https://doi.org/10.1146/annurev-fluid-122109-160744

    Article  MathSciNet  MATH  Google Scholar 

  25. Bagabir, A., Drikakis, D.: Numerical experiments using high-resolution schemes for unsteady, inviscid, compressible flows. Comput. Methods Appl. Mech. Eng. 193, 4675–4705 (2004). https://doi.org/10.1016/j.cma.2004.03.012

    Article  MathSciNet  MATH  Google Scholar 

  26. Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock-bubble interaction: numerical and analytical studies with experimental validation. Phys. Fluids 18(028603), 1–10 (2006). https://doi.org/10.1063/1.2185685

    Article  Google Scholar 

  27. Marquina, A., Mulet, P.: A flux-split algorithm applied to conservative models for multicomponent compressible flows. J. Comput. Phys. 185, 120–138 (2003). https://doi.org/10.1016/S0021-9991(02)00050-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Kundu, A., De, S.: Application of compact schemes in the CUSP framework for strong shock-vortex interaction. Comput. Fluids 126, 192–204 (2016). https://doi.org/10.1016/j.compfluid.2015.11.018

    Article  MathSciNet  MATH  Google Scholar 

  29. Kundu, A., De, S.: Navier–Stokes simulation of shock-heavy bubble interaction: comparison of upwind and WENO schemes. Comput. Fluids 157, 131–145 (2017). https://doi.org/10.1016/j.compfluid.2017.08.025

    Article  MathSciNet  MATH  Google Scholar 

  30. Kundu, A., De, S.: High resolution numerical simulation of a shock-accelerated refrigerant-22 bubble. Comput. Fluids 193, 1–14 (2019). https://doi.org/10.1016/j.compfluid.2019.104289

    Article  MathSciNet  MATH  Google Scholar 

  31. Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge–Kutta schemes. NASA TM 109112 (1994). https://ntrs.nasa.gov/citations/19940028444

  32. Kundu, A., De, S.: High-resolution Euler simulation of a cylindrical blast wave in an enclosure. J. Vis. 18, 733–738 (2015). https://doi.org/10.1007/s12650-014-0254-x

    Article  Google Scholar 

  33. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II: multi-dimensional limiting process. J. Comput. Phys. 208, 570–615 (2005). https://doi.org/10.1016/j.jcp.2005.02.022

    Article  MATH  Google Scholar 

  34. Wada, Y., Liou, M.-S.: An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J. Sci. Comput. 18(3), 633–657 (1997). https://doi.org/10.1137/S1064827595287626

    Article  MathSciNet  MATH  Google Scholar 

  35. Halder, P., De, S., Sinhamahapatra, K.P., Singh, N.: Numerical simulation of shock–vortex interaction in Schardin’s problem. Shock Waves 23, 495–504 (2013). https://doi.org/10.1007/s00193-013-0448-5

    Article  Google Scholar 

  36. De, S., Murugan, T.: Numerical simulation of shock tube generated vortex: effect of numerics. Int. J. Comput. Fluid D 25(6), 345–354 (2011). https://doi.org/10.1080/10618562.2011.600694

    Article  MathSciNet  MATH  Google Scholar 

  37. Murugan, T., De, S., Dora, C.L., Das, D.: Numerical simulation and PIV study of compressible vortex ring evolution. Shock Waves 22, 69–83 (2011). https://doi.org/10.1007/s00193-011-0344-9

    Article  Google Scholar 

  38. Murugan, T., De, S., Dora, C.L., Das, D., Kumar, P.P.: A study of the counter-rotating vortex rings interacting with the primary vortex ring in shock tube generated flows. Fluid Dyn. Res. 45(025506), 1–20 (2013). https://doi.org/10.1088/0169-5983/45/2/025506

    Article  MathSciNet  MATH  Google Scholar 

  39. Dora, C.L., Murugan, T., De, S., Das, D.: Role of slipstream instability in formation of counter-rotating vortex rings ahead of a compressible vortex ring. J. Fluid Mech. 753, 29–48 (2014). https://doi.org/10.1017/jfm.2014.353

  40. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992). https://doi.org/10.1016/0021-9991(92)90324-R

    Article  MathSciNet  MATH  Google Scholar 

  41. Latini, M., Schilling, O., Don, W.S.: Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability. J. Comput. Phys. 221, 805–836 (2007). https://doi.org/10.1016/j.jcp.2006.06.051

    Article  MathSciNet  MATH  Google Scholar 

  42. Samtaney, R., Pullin, D.I.: On initial-value and self-similar solutions of the compressible Euler equations. Phys. Fluids 8, 2650 (1996). https://doi.org/10.1063/1.869050

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge their access to the High Performance Computing Facility of CSIR-CMERI. In particular, the authors are immensely indebted to Anupam Sinha, of the Aerosystems Laboratory of the Institute, who has skilfully developed and maintained this facility. The author thank Sudipta De, former principal scientist at CSIR-CMERI, for his enormous contribution in developing the inhouse compressible flow solver.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kundu.

Additional information

Communicated by R. Bonazza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A. Numerical simulation of a shock–helium bubble interaction. Shock Waves 31, 19–30 (2021). https://doi.org/10.1007/s00193-021-00996-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-00996-x

Keywords

Navigation