Skip to main content
Log in

Analytical Model of a Magnetopause in a Multicomponent Collisionless Plasma with a Kappa Energy Distribution of Particles

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

We propose an analytical model for a distributed current sheet with a variable profile that separates two regions of anisotropic collisionless plasma with different magnetic fields and different effective temperatures of the kappa energy distributions of electrons and ions. The model also admits the presence of several ion components with different effective temperatures and spatially separated localized countercurrents of each of these components. We demonstrate the change in the characteristics of the current sheet when going from a Maxwellian to a kappa distribution, which takes into account the presence of a power-law spectrum of energetic particles typical of a nonequilibrium magnetoactive plasma. The theory developed allows us to carry out for the first time analytical modeling of such current configurations in both laboratory and cosmic plasmas, e.g., in planetary magnetopauses, coronal loops, and stellar wind with magnetic clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. F. Burlaga, N. F. Ness, D. B. Berdichevsky, J. Park, L. K. Jian, A. Szabo, E. C. Stone, and J. D. Richardson, Nat. Astron. 3, 1007 (2019). .https://doi.org/10.1038/s41550-019-0920-y

    Article  ADS  Google Scholar 

  2. W. Baumjohann, M. Blanc, A. Fedorov, and K.-H. Glassmeier, Space Sci. Rev. 152, 99 (2010). https://doi.org/10.1007/s11214-010-9629-z

    Article  ADS  Google Scholar 

  3. W. J. Heikkila, Earth’s Magnetosphere: Formed by the Low-Latitude Boundary Layer (Elsevier, Amsterdam, 2011), p. 536. https://doi.org/10.1016/c2009-0-05888-7

    Book  Google Scholar 

  4. K. V. Malova, L. M. Zelenyi, O. V. Mingalev, I. V. Mingalev, V. Y. Popov, A. V. Artemyev, and A. A. Petrukovich, Plasma Phys. Rep. 36, 841 (2010). https://doi.org/10.1134/s1063780x10100028

    Article  ADS  Google Scholar 

  5. V. V. Izmodenov and D. B. Alexashov, Astrophys. J.Suppl. Ser. 220 (2), 32 (2015). https://doi.org/10.1088/0067-0049/220/2/32

    Article  ADS  Google Scholar 

  6. J. Dudík, E. Dzifcáková, N. Meyer-Vernet, G. D. Zanna, P. R. Young, A. Giunta, B. Sylwester, J. Sylwester, M. Oka, H. E. Mason, C. Vocks, L. Matteini, S. Krucker, D. R. Williams, and S. Mackovjak, Solar Phys. 292 (8) (2017). https://doi.org/10.1007/s11207-017-1125-0

  7. L. M. Zelenyi, H. V. Malova, E. E. Grigorenko, V. Y. Popov, and E. M. Dubinin, Geophys. Res. Lett. 47 (14) (2020). https://doi.org/10.1029/2020gl088422

  8. B.-B. Tang, W. Y. Li, D. B. Graham, A. C. Rager, C. Wang, Y. V. Khotyaintsev, B. Lavraud, H. Hasegawa, Y.-C. Zhang, L. Dai, B. L. Giles, J. C. Dorelli, C. T. Russell, P.-A. Lindqvist, R. E. Ergun, and J. L. Burch, Geophys. Res. Lett. 46, 3024 (2019). https://doi.org/10.1029/2019gl082231

    Article  ADS  Google Scholar 

  9. L. M. Zelenyi, H. V. Malova, A. V. Artemyev, V. Y. Popov, and A. A. Petrukovich, Plasma Phys. Rep. 37, 118 (2011). https://doi.org/10.1134/s1063780x1102005x

    Article  ADS  Google Scholar 

  10. V. V. Kocharovsky, V. V. Kocharovsky, V. Y. Martyanov, and S. V. Tarasov, Phys. Usp. 59, 1165 (2016). https://doi.org/10.3367/ufne.2016.08.037893

    Article  ADS  Google Scholar 

  11. T. Neukirch, F. Wilson, and O. Allanson, Plasma Phys. Control. Fusion 60, 014008 (2018). https://doi.org/10.1088/1361-6587/aa8485

    Article  ADS  Google Scholar 

  12. T. Neukirch, I. Y. Vasko, A. V. Artemyev, and O. Allanson, Astrophys. J. 891, 86 (2020). .https://doi.org/10.3847/1538-4357/ab7234

    Article  ADS  Google Scholar 

  13. V. V. Kocharovsky, V. V. Kocharovsky, V. Y. Martyanov, and A. A. Nechaev, Astron. Lett. 45, 551 (2019). https://doi.org/10.1134/S1063773719080048

    Article  ADS  Google Scholar 

  14. G. Livadiotis, Kappa Distributions: Theory and Applications in Plasmas (Elsevier, Amsterdam, 2017).

    Book  Google Scholar 

  15. P. H. Yoon, Rev. Mod. Plasma Phys. 1, 4 (2017). https://doi.org/10.1007/s41614-017-0006-1

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation, project no. 16-12-10528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vl. V. Kocharovsky.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharovsky, V.V., Kocharovsky, V.V. & Nechaev, A.A. Analytical Model of a Magnetopause in a Multicomponent Collisionless Plasma with a Kappa Energy Distribution of Particles. Dokl. Phys. 66, 9–13 (2021). https://doi.org/10.1134/S1028335821010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335821010031

Keywords:

Navigation