Skip to main content
Log in

Characterizing Reactive Transport Behavior in a Three-Dimensional Discrete Fracture Network

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

While several studies have linked network and in-fracture scale properties to conservative transport behavior in subsurface fractured media, studies on reactive transport cases remain relatively underdeveloped. In this study, we explore the behavior of an irreversible kinetic reaction during the interaction of two solute plumes, one consisting of species A and the other species B. When the plumes converge, these species react kinetically to form a new species C via \(A+B\xrightarrow {k} C\). This reactive system is studied using a three-dimensional discrete fracture network (DFN) model coupled with reactive Lagrangian particle tracking. We find that the interplay of network topology and chemical properties of the reactive solutes controls reactive transport processes. The network topology drives species A and B together, and the chemical properties dictate whether and how quickly a reaction occurs. Results demonstrate that reactions are most likely to occur in high-velocity fractures that make up the network backbone. The interplay between species’ chemical properties and transport is characterized by a non-dimensional Damköhler (Da) number. We show that the spatial distribution of reactions is sensitive to Da, which subsequently influences late-time tailing behavior in outlet breakthrough time distributions. The results of this study provide initial insights into how an irreversible reaction occurs during transport in a fracture network, using a methodology that can be applied to study reactive transport in a wide range of fractured media environments and contexts.

Article Highlights

  • Discrete Fracture Network models are used to study reactive transport behavior.

  • We consider the irreversible chemical reaction A + B → C

  • Reactions primarily occur in the network backbone and reaction locations are sensitive to chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aldrich, G., Hyman, J.D., Karra, S., Gable, C.W., Makedonska, N., Viswanathan, H., Hamann, B.: Analysis and visualization of discrete fracture networks using a flow topology graph. IEEE Trans. Visual Comput. Graphics 23(8), 1896–1909 (2017). https://doi.org/10.1109/tvcg.2016.2582174

    Article  Google Scholar 

  • Anna, Pd., Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Le Borgne, T., Derrien, M., Méheust, Y.: Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci. Technol. 48(1), 508–516 (2014)

    Article  Google Scholar 

  • Baghbanan, A., Jing, L.: Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int. J. Rock Mech. Min. Sci. 44(5), 704–719 (2007)

    Article  Google Scholar 

  • Barbier, E.: Geothermal energy technology and current status: an overview. Renew. Sust. Energ. Rev. 6(1–2), 3–65 (2002)

    Article  Google Scholar 

  • Benson, D.A., Aquino, T., Bolster, D., Engdahl, N., Henri, C.V., Fernandez-Garcia, D.: A comparison of eulerian and lagrangian transport and non-linear reaction algorithms. Adv. Water Resour. 99, 15–37 (2017)

    Article  Google Scholar 

  • Benson, D.A., Meerschaert, M.M.: Simulation of chemical reaction via particle tracking: Diffusion-limited versus thermodynamic rate-limited regimes. Water Resour. Res. 44, 12 (2008)

    Article  Google Scholar 

  • Benson, D.A., Pankavich, S., Bolster, D.: On the separate treatment of mixing and spreading by the reactive-particle-tracking algorithm: an example of accurate upscaling of reactive poiseuille flow. Adv. Water Resour. 123, 40–53 (2019)

    Article  Google Scholar 

  • Berre, I., Doster, F., Keilegavlen, E.: Flow in fractured porous media: a review of conceptual models and discretization approaches. Transport Porous Med 1, 1–22 (2018)

    Google Scholar 

  • Bolster, D., Barahona, M., Dentz, M., Fernandez-Garcia, D., Sanchez-Vila, X., Trinchero, P., Tartakovsky, D.M.: Probabilistic risk analysis of groundwater remediation strategies. Water Resourc Res 45(6), 1 (2009). https://doi.org/10.1029/2008WR007551

    Article  Google Scholar 

  • Bolster, D., de Anna, P., Benson, D.A., Tartakovsky, A.M.: Incomplete mixing and reactions with fractional dispersion. Adv. Water Resour. 37, 86–93 (2012)

    Article  Google Scholar 

  • Bolster, D., Paster, A., Benson, D.A.: A particle number conserving l agrangian method for mixing-driven reactive transport. Water Resour. Res. 52(2), 1518–1527 (2016)

    Article  Google Scholar 

  • Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347–383 (2001)

    Article  Google Scholar 

  • Bouquain, J., Méheust, Y., Bolster, D., Davy, P.: The impact of inertial effects on solute dispersion in a channel with periodically varying aperture. Phys. Fluids 24(8), 083602 (2012)

    Article  Google Scholar 

  • Bour, O., Davy, P.: Connectivity of random fault networks following a power law fault length distribution. Water Resour. Res. 33(7), 1567–1583 (1997)

    Article  Google Scholar 

  • Boutt, D.F., Grasselli, G., Fredrich, J.T., Cook, B.K., Williams, J.R.: Trapping zones: The effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys. Res. Lett. 33, 21 (2006)

    Article  Google Scholar 

  • Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp, J.M.: Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies. Geophys. Res. Lett. 34, 14 (2007)

    Article  Google Scholar 

  • Cvetkovic, V., Painter, S., Outters, N., Selroos, J.: Stochastic simulation of radionuclide migration in discretely fractured rock near the äspö hard rock laboratory. Water Resour. Res. 40, 2 (2004)

    Article  Google Scholar 

  • Davy, P., Bour, O., De Dreuzy, J.R., Darcel, C.: Flow in multiscale fractal fracture networks. Geol. Soc. Lond. Spec. Publ. 261(1), 31–45 (2006)

    Article  Google Scholar 

  • de Anna, P., Dentz, M., Tartakovsky, A., Le Borgne, T.: The filamentary structure of mixing fronts and its control on reaction kinetics in porous media flows. Geophys. Res. Lett. 41(13), 4586–4593 (2014)

    Article  Google Scholar 

  • De Barros, F.P., Dentz, M., Koch, J., Nowak, W.: Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys. Res. Lett. 39, 8 (2012)

    Article  Google Scholar 

  • de Dreuzy, J., Darcel, C., Davy, P., Bour, O.: Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution. Water Resour. Res. 40(1), 1 (2004)

    Article  Google Scholar 

  • de Dreuzy, J., Davy, P., Bour, O.: Hydraulic properties of two-dimensional random fracture networks following a power law length distribution 2. permeability of networks based on lognormal distribution of apertures. Water Resour. Res. 37(8), 2079–2095 (2001)

    Article  Google Scholar 

  • de Dreuzy, J., Méheust, Y., Pichot, G.: Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks. J. Geophys. Research-Sol. Ea. 117(B11), 1 (2012)

    Article  Google Scholar 

  • de Dreuzy, J.R., Carrera, J., Dentz, M., Le Borgne, T.: Time evolution of mixing in heterogeneous porous media. Water Resour. Res. 48, 6 (2012)

    Article  Google Scholar 

  • Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1–17 (2011)

    Article  Google Scholar 

  • Detwiler, R.L., Rajaram, H., Glass, R.J.: Solute transport in variable-aperture fractures: an investigation of the relative importance of taylor dispersion and macrodispersion. Water Resour. Res. 36(7), 1611–1625 (2000)

    Article  Google Scholar 

  • Ding, D., Benson, D.A., Fernàndez-Garcia, D., Henri, C.V., Hyndman, D.W., Phanikumar, M.S., Bolster, D.: Elimination of the reaction rate “scale effect”: Application of the lagrangian reactive particle-tracking method to simulate mixing-limited, field-scale biodegradation at the Schoolcraft (MI, USA) site. Water Resources Research 53(12), 10411–10432 (2017)

  • Ding, D., Benson, D.A., Paster, A., Bolster, D.: Modeling bimolecular reactions and transport in porous media via particle tracking. Adv. Water Resour. 53, 56–65 (2013)

    Article  Google Scholar 

  • Engdahl, N.B., Benson, D.A., Bolster, D.: Lagrangian simulation of mixing and reactions in complex geochemical systems. Water Resour. Res. 53(4), 3513–3522 (2017)

    Article  Google Scholar 

  • Frampton, A., Cvetkovic, V.: Upscaling particle transport in discrete fracture networks: 1. Nonreactive tracers. Water Resour. Res. 43, 10 (2007)

    Google Scholar 

  • Frampton, A., Hyman, J., Zou, L.: Advective transport in discrete fracture networks with connected and disconnected textures representing internal aperture variability. Water Resources Research. https://doi.org/10.1029/2018WR024322 (2019)

  • Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77(5), 1461–1477 (2013)

    Article  Google Scholar 

  • Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  • Huseby, O., Thovert, J., Adler, P.: Geometry and topology of fracture systems. J. Phys. A Math. Gen. 30(5), 1415 (1997)

    Article  Google Scholar 

  • Hyman, J., Dentz, M., Hagberg, A., Kang, P.K.: Linking structural and transport properties in three-dimensional fracture networks. J. Geophys. Res. Solid Earth 124(2), 1185–1204 (2019)

    Article  Google Scholar 

  • Hyman, J.D.: Flow channeling in fracture networks: characterizing the effect of density on preferential flow path formation. Water Resour. Res. (2020)

  • Hyman, J.D., Aldrich, G., Viswanathan, H., Makedonska, N., Karra, S.: Fracture size and transmissivity correlations: implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Rescour. Research 52(8), 6472–6489 (2016). https://doi.org/10.1002/2016WR018806

    Article  Google Scholar 

  • Hyman, J.D., Dentz, M., Hagberg, A., Kang, P.: Emergence of stable laws for first passage times in three-dimensional random fracture networks. Phys. Rev. Lett. 123(24), 248501 (2019)

    Article  Google Scholar 

  • Hyman, J.D., Gable, C.W., Painter, S.L., Makedonska, N.: Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy. SIAM J. Sci. Comput. 36(4), A1871–A1894 (2014)

    Article  Google Scholar 

  • Hyman, J.D., Hagberg, A., Osthus, D., Srinivasan, S., Viswanathan, H., Srinivasan, G.: Identifying backbones in three-dimensional discrete fracture networks: a bipartite graph-based approach. Multisc. Model. Simul. 16(4), 1948–1968 (2018)

    Article  Google Scholar 

  • Hyman, J.D., Hagberg, A., Srinivasan, G., Mohd-Yusof, J., Viswanathan, H.: Predictions of first passage times in sparse discrete fracture networks using graph-based reductions. Phys. Rev. E 96(1), 013304 (2017). https://doi.org/10.1103/PhysRevE.96.013304

    Article  Google Scholar 

  • Hyman, J.D., Jiménez-Martínez, J.: Dispersion and mixing in three-dimensional discrete fracture networks: nonlinear interplay between structural and hydraulic heterogeneity. Water Rescour. Res. 54(5), 3243–3258 (2018)

    Article  Google Scholar 

  • Hyman, J.D., Jiménez-Martínez, J., Gable, C.W. , Stauffer, P.H., Pawar, R.J.: Characterizing the impact of fractured caprock heterogeneity on supercritical co2 injection. Transp. Porous Med. 1–21 (2019)

  • Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S.: dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Comput. Geosci. 84, 10–19 (2015)

    Article  Google Scholar 

  • Hyman, J.D., Painter, S.L., Viswanathan, H., Makedonska, N., Karra, S.: Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resour. Res. 51(9), 7289–7308 (2015)

    Article  Google Scholar 

  • Kang, P.K., Brown, S., Juanes, R.: Emergence of anomalous transport in stressed rough fractures. Earth Planet. Sci. Lett. 454, 46–54 (2016)

    Article  Google Scholar 

  • Kang, P.K., Dentz, M., Le Borgne, T., Juanes, R.: Anomalous transport on regular fracture networks: impact of conductivity heterogeneity and mixing at fracture intersections. Phys. Rev. E 92(2), 022148 (2015)

    Article  Google Scholar 

  • Kang, P.K., Dentz, M., Le Borgne, T., Lee, S., Juanes, R.: Anomalous transport in disordered fracture networks: spatial Markov model for dispersion with variable injection modes. Adv. Water Resour. 106, 80–94 (2017)

    Article  Google Scholar 

  • Kang, P.K., Le Borgne, T., Dentz, M., Bour, O., Juanes, R.: Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model. Water Resour. Res. 51(2), 940–959 (2015)

    Article  Google Scholar 

  • Kang, P.K., Lei, Q., Dentz, M., Juanes, R.: Stress-induced anomalous transport in natural fracture networks. Water Resour. Res. (2019)

  • Karra, S., D, O’Malley., Hyman, J., Viswanathan, H., Srinivasan, G.: Modeling flow and transport in fracture networks using graphs. Phys. Rev. E 97(3), 033304 (2018)

    Article  Google Scholar 

  • Knutson, C., Valocchi, A., Werth, C.: Comparison of continuum and pore-scale models of nutrient biodegradation under transverse mixing conditions. Adv. Water Resour. 30(6–7), 1421–1431 (2007)

    Article  Google Scholar 

  • Kreft, A., Zuber, A.: On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem. Eng. Sci. 33(11), 1471–1480 (1978)

    Article  Google Scholar 

  • Lichtner, P., Hammond, G. , Lu, C., Karra, S., Bisht, G., Andre, B., Kumar, J.: PFLOTRAN user manual: A massively parallel reactive flow and transport model for describing surface and subsurface processes (Tech. Rep.). (Report No.: LA-UR-15-20403) Los Alamos National Laboratory (2015)

  • Maillot, J., Davy, P., Le Goc, R., Darcel, C., De Dreuzy, J.R.: Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models. Water Resour. Res. 52(11), 8526–8545 (2016)

    Article  Google Scholar 

  • Makedonska, N., Hyman, J.D., Karra, S., Painter, S.L., Gable, C.W.W., Viswanathan, H.S.: Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Adv. Water Resour. 94, 486–497 (2016)

    Article  Google Scholar 

  • Makedonska, N., Painter, S.L., Bui, Q.M., Gable, C.W., Karra, S.: Particle tracking approach for transport in three-dimensional discrete fracture networks. Computat. Geosci. 1:1–15 (2015)

  • Mourzenko, V., Thovert, J.F., Adler, P.: Percolation of three-dimensional fracture networks with power-law size distribution. Phys. Rev. E 72(3), 036103 (2005)

    Article  Google Scholar 

  • Pacala, S., Socolow, R.: Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686), 968–972 (2004)

    Article  Google Scholar 

  • Painter, S.L., Gable, C.W., Kelkar, S.: Pathline tracing on fully unstructured control-volume grids. Computat. Geosci. 16(4), 1125–1134 (2012)

    Article  Google Scholar 

  • Paster, A., Bolster, D., Benson, D.: Particle tracking and the diffusion-reaction equation. Water Resour. Res. 49(1), 1–6 (2013)

    Article  Google Scholar 

  • Paster, A., Bolster, D., Benson, D.A.: Connecting the dots: Semi-analytical and random walk numerical solutions of the diffusion-reaction equation with stochastic initial conditions. J. Comput. Phys. 263, 91–112 (2014)

    Article  Google Scholar 

  • Rolle, M., Le Borgne, T.: Mixing and reactive fronts in the subsurface. Rev. Miner. Geochem. 85(1), 111–142 (2019)

    Article  Google Scholar 

  • Sanchez-Vila, X., Fernàndez-Garcia, D., Guadagnini, A.: Interpretation of column experiments of transport of solutes undergoing an irreversible bimolecular reaction using a continuum approximation. Water Resour. Res. 46, 12 (2010)

    Article  Google Scholar 

  • Sherman, T., Engdahl, N.B., Porta, G., Bolster, D.: A review of spatial markov models for predicting pre-asymptotic and anomalous transport in porous and fractured media. J. Contam. Hydrol. 1, 103734 (2020)

    Google Scholar 

  • Sherman, T., Hyman, J.D., Bolster, D., Makedonska, N., Srinivasan, G.: Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks. Phys. Rev. E 99(1), 013110 (2019)

    Article  Google Scholar 

  • Sherman, T., Hyman, J.D. , Dentz, M., Bolster, D.: Characterizing the influence of fracture density on network scale transport. J. Geophys. Res. Solid Earth (2020)

  • Sherman, T., Janetti, E.B., Guédon, G.R., Porta, G., Bolster, D.: Upscaling transport of a sorbing solute in disordered non periodic porous domains. Adv. Water Resour. 103574 (2020)

  • Sole-Mari, G., Fernàndez-Garcia, D., Rodríguez-Escales, P., Sanchez-Vila, X.: A kde-based random walk method for modeling reactive transport with complex kinetics in porous media. Water Resour. Res. 53(11), 9019–9039 (2017)

    Article  Google Scholar 

  • Srinivasan, S., Karra, S., Hyman, J., Viswanathan, H., Srinivasan, G.: Model reduction for fractured porous media: a machine learning approach for identifying main flow pathways. Comput. Geosci. 23(3), 617–629 (2019)

    Article  Google Scholar 

  • Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet. Sci. Lett. 240(3–4), 539–558 (2005)

    Article  Google Scholar 

  • Sund, N., Porta, G., Bolster, D., Parashar, R.: A lagrangian transport eulerian reaction spatial (laters) markov model for prediction of effective bimolecular reactive transport. Water Resour. Res. 53(11), 9040–9058 (2017)

    Article  Google Scholar 

  • Svensk Kärnbränslehantering AB.: Data report for the safety assessment SR-site (TR-10-52) (Tech. Rep.), Svensk Kärnbränslehantering AB (2010)

  • Sweeney, M.R., Hyman, J.D.: Stress effects on flow and transport in three-dimensional fracture networks. J. Geophys. Res. Sol. Ea. 125, e2020JB019754. (2020) https://doi.org/10.1029/2020JB019754

    Article  Google Scholar 

  • Valera, M., Guo, Z., Kelly, P., Matz, S., Cantu, V.A., Percus, A.G., Viswanathan, H.S.: Machine learning for graph-based representations of three-dimensional discrete fracture networks. Comput. Geosci. 22(3), 695–710 (2018)

    Article  Google Scholar 

  • Valocchi, A.J., Bolster, D., Werth, C.J.: Mixing-limited reactions in porous media. Transp. Porous Med. 130(1), 157–182 (2019)

    Article  Google Scholar 

  • Viswanathan, H.S., Hyman, J., Karra, S., O’Malley, D., Srinivasan, S., Hagberg, A., Srinivasan, G.: Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resour. Res. 54(9), 6085–6099 (2018)

    Article  Google Scholar 

  • Werth, C.J., Cirpka, O.A., Grathwohl, P.: Enhanced mixing and reaction through flow focusing in heterogeneous porous media. Water Resour. Res. 42, 12 (2006)

    Article  Google Scholar 

  • Wood, B.D., Quintard, M., Whitaker, S.: Jump conditions at non-uniform boundaries: the catalytic surface. Chem. Eng. Sci. 55(22), 5231–5245 (2000)

    Article  Google Scholar 

  • Wright, E.E., Richter, D.H., Bolster, D.: Effects of incomplete mixing on reactive transport in flows through heterogeneous porous media. Phys. Rev. Fluids 2(11), 114501 (2017)

    Article  Google Scholar 

  • Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Med. 23(1), 1–30 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

D.B’s portion of this work was supported by the US Army Research Office under Contract/Grant number W911NF-18-1-0338. M.R.S. and J.D.H. thank the Department of Energy (DOE) Basic Energy Sciences program (LANLE3W1) for support. M.R.S. would like to thank the Center for Nonlinear Studies for support. M.R.S. and J.D.H. also gratefully acknowledge support from the LANL LDRD program office Grant Number #20180621ECR. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of US Department of Energy (Contract No. 89233218CNA000001). dfnWorks is open source software and can be obtained at https://github.com/lanl/dfnWorks LA-UR-20-26548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sherman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, T., Sole-Mari, G., Hyman, J. et al. Characterizing Reactive Transport Behavior in a Three-Dimensional Discrete Fracture Network. Transp Porous Med 146, 307–327 (2023). https://doi.org/10.1007/s11242-021-01568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01568-4

Navigation