Skip to main content
Log in

Investigation of the crystal structures and magnetic features of two bis(dithiolato)nickelate salts with flexible organic cations

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two bis(dithiolato)nickel salts with different flexible ammonium counterions, [Et3MeN][Ni(dmit)2] (1) and [(i-Bu)Et3N][Ni(dmit)2] (2) (dmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolate, Et3MeN+ = triethylmethylammonium, (i-Bu)Et3N+ = triethylisobutylammonium), are prepared and identified by powder X-ray diffraction (PXRD) patterns and single-crystal X-ray diffraction. Salt 1 crystallizes in the triclinic space group P − 1 at 293 K. The anions and cations in 1 form alternating layered arrangements along the a-axis direction. Salt 2 belongs to the monoclinic crystal system and space group P21/n. The anions and cations in 2 form separate columnar stacks along bc-plane direction. The neighboring anions are stacked as dimers in the anion columnar stacks of 2. The magnetic features of salts 1 and 2 show 1D alternating spin chain magnetic exchange behavior, and the magnetic experimental data are well fitted through a spin chain magnetic model. The difference in the crystal structures and magnetic properties between the two new salts 1 and 2 fully demonstrates that the magnetic properties are dependent on the alignment of the [Ni(dmit)2] anions, which are related to the flexible organic cations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cassoux P, Valade L, Kobayashi H, Kobayashi A, Clark RA, Underhill AE (1991) Coord Chem Rev 110:115

    CAS  Google Scholar 

  2. Pullen AE, Olk R-M (1999) Coord Chem Rev 188:211

    CAS  Google Scholar 

  3. Robertson N, Cronin L (2002) Coord Chem Rev 227:93

    CAS  Google Scholar 

  4. Akutagawa T, Nakamura T (2000) Coord Chem Rev 198:297

    CAS  Google Scholar 

  5. Kato R (2004) Chem Rev 104:5319

    CAS  PubMed  Google Scholar 

  6. Fourmigué M (2004) Acc Chem Res 37:179

    PubMed  Google Scholar 

  7. Kobayashi A, Fujiwara E, Kobayashi H (2004) Chem Rev 104:5243

    CAS  PubMed  Google Scholar 

  8. Bader K, Dengler D, Lenz S, Endeward B, Jiang SD, Neugebauer P, Slageren J (2014) Nat Commun 5:5304

    CAS  PubMed  Google Scholar 

  9. Zadrozny JM, Niklas J, Poluektov OG, Freedman DE, Cent ACS (2015) Sci 1:488

    CAS  Google Scholar 

  10. Escalera-Moreno L, Suaud N, Gaita-Ariño A, Coronado E (2017) J Phys Chem Lett 8:1695

    CAS  PubMed  Google Scholar 

  11. Hachem H, Cui HB, Tsumuraya T, Kato R, Jeannin O, Fourmigué M, Lorcy D (2020). J Mater Chem C. https://doi.org/10.1039/D0TC02868A

    Article  Google Scholar 

  12. Hachem H, Jeannin O, Fourmigué M, Barrière F, Lorcy D (2020) Cryst Eng Commun 22:3579

    CAS  Google Scholar 

  13. Hachem H, Bellec N, Fourmigué M, Lorcy D (2020) Dalton Trans 49:6056

    CAS  PubMed  Google Scholar 

  14. Duan HB, Ren XM, Meng QJ (2010) Coord Chem Rev 254:1509

    CAS  Google Scholar 

  15. Ren XM, Meng QJ, Song Y, Lu CS, Hu CJ, Chen XY (2002) Inorg Chem 41:5686

    CAS  PubMed  Google Scholar 

  16. Ren XM, Okudera H, Kremer RK, Song Y, He C, Meng QJ, Wu PH (2004) Inorg Chem 43:2569

    CAS  PubMed  Google Scholar 

  17. Ning WH, Zhai L, Liu JL, Ren XM, Ichihashi K, Nishihara S, Inoued K (2015) J Mater Chem C 3:7906

    CAS  Google Scholar 

  18. Yang H, Cheng T, Goddard WA, Ren XM (2019) J Phys Chem Lett 10:6432

    CAS  PubMed  Google Scholar 

  19. Yuan GJ, Shao DS, Ren Q, Feng FY, Yang H, Wang L, Ren XM (1829) Cryst Growth Des 2020:20

    Google Scholar 

  20. Qian Y, Shao DS, Yao WW, Yao ZY, Wang L, Liu WL, Ren XM, Appl ACS (2020) Mater Interfaces 12:28129

    CAS  Google Scholar 

  21. Kusamoto T, Yamamoto HM, Tajima N, Oshima Y, Yamashita S, Kato R (2012) Inorg Chem 51:11645

    CAS  PubMed  Google Scholar 

  22. Han YK, Seo DK, Kang H, Kang W, Noh DY (2004) Inorg Chem 43:7294

    CAS  PubMed  Google Scholar 

  23. Mukai K, Senba N, Hatanaka T, Minakuchi H, Ohara K, Taniguchi M, Misaki Y, Hosokoshi Y, Inoue K, Azuma N (2004) Inorg Chem 43:566

    CAS  PubMed  Google Scholar 

  24. Mukai K, Hatanaka T, Senba N, Nakayashiki T, Misaki Y, Tanaka K, Ueda K, Sugimoto T, Azuma N (2002) Inorg Chem 41:5066

    CAS  PubMed  Google Scholar 

  25. Zang SQ, Ren XM, Su Y, Song Y, Tong W, Ni Z, Zhao H, Gao S, Meng Q (2009) Inorg Chem 48:9623

    CAS  PubMed  Google Scholar 

  26. Zapata-Rivera J, Maynau D, Calzado CJ (2017) Chem Mater 29:4317

    CAS  Google Scholar 

  27. Kusamoto T, Yamamoto HM, Kato R (2013) Cryst Growth Des 13:4533

    CAS  Google Scholar 

  28. Kosaka Y, Yamamoto HM, Nakao A, Tamura M, Kato R (2007) J Am Chem Soc 129:3054

    CAS  PubMed  Google Scholar 

  29. Lieffrig J, Jeannin O, Auban-Senzier P, Fourmigué M (2012) Inorg Chem 51:7144

    CAS  PubMed  Google Scholar 

  30. Kusamoto T, Yamamoto HM, Tajima N, Oshima Y, Yamashita S, Kato R (2013) Inorg Chem 52:4759

    CAS  PubMed  Google Scholar 

  31. Kato R, Cui HB, Tsumuraya T, Miyazaki T, Suzumura Y (2017) J Am Chem Soc 139(5):1770–1773

    CAS  PubMed  Google Scholar 

  32. Akutagawa T, Nakamura T (2002) Coord Chem Rev 226:3

    CAS  Google Scholar 

  33. Akutagawa T, Nakamura T, Inabe T, Underhill AE (1998) Thin Solid Films 331:264

    CAS  Google Scholar 

  34. Hoshino N, Yoshii Y, Aonuma M, Kubo K, Nakamura T, Akutagawa T (2012) Inorg Chem 51:12968

    CAS  PubMed  Google Scholar 

  35. Ye Q, Akutagawa T, Endo T, Noro S, Nakamura T, Xiong RG (2010) Inorg Chem 49:8591

    CAS  PubMed  Google Scholar 

  36. Akutagawa T, Hasegawa T, Nakamura T, Inabe T (2002) J Am Chem Soc 124:8903

    CAS  PubMed  Google Scholar 

  37. Akutagawa T, Shitagami K, Aonuma M, Noro S, Nakamura T (2009) Inorg Chem 48:4454

    CAS  PubMed  Google Scholar 

  38. Akutagawa T, Shitagami K, Nishihara S, Takeda S, Hasegawa T, Nakamura T, Hosokoshi Y, Inoue K, Ikeuchi S, Miyazaki Y, Saito K (2005) J Am Chem Soc 127:4397

    CAS  PubMed  Google Scholar 

  39. Ye Q, Akutagawa T, Hoshino N, Kikuchi T, Noro S, Xiong RG, Nakamura T (2011) Cryst Growth Des 11:4175

    CAS  Google Scholar 

  40. Ichihashi K, Konno D, Date T, Nishimura T, Maryunina KY, Inoue K, Nakaya T, Toyoda K, Tatewaki Y, Akutagawa T, Nakamura T, Nishihara S (2018) Chem Mater 30:7130

    CAS  Google Scholar 

  41. Ye Q, Shi PP, Fu XQ, Akutagawa T, Nakamura T (2013) Cryst Eng Commun 15:5307

    CAS  Google Scholar 

  42. Hiraga H, Miyasaka H, Clérac R, Fourmigué M, Yamashita M (2009) Inorg Chem 48:2887–2898

    CAS  PubMed  Google Scholar 

  43. Takahashi K, Cui HB, Okano Y, Kobayashi H, Einaga Y, Sato O (2006) Inorg Chem 45:5739

    CAS  PubMed  Google Scholar 

  44. Takahashi K, Cui HB, Okano Y, Kobayashi H, Mori H, Tajima H, Einaga Y, Sato O (2008) J Am Chem Soc 130:6688

    CAS  PubMed  Google Scholar 

  45. Takahashi K, Mochida T, Sakurai T, Ohta H, Yamamoto T, Einaga Y, Mori H (1983) Angew Chem Int Ed 2014:53

    Google Scholar 

  46. Takahashi K, Moria H, Kobayashi H, Sato O (2019) Polyhedron 28:1776

    Google Scholar 

  47. Vieira BJC, Dias JC, Santos IC, Pereira LCJ, Gama VD, Waerenborgh JC (2015) Inorg Chem 54:1354

    CAS  PubMed  Google Scholar 

  48. Okai M, Takahashi K, Sakurai T, Ohta H, Yamamoto T, Einaga Y (2015) J Mater Chem C 3:7858

    CAS  Google Scholar 

  49. Faulmann C, Szilágyi PÁ, Jacob K, Chahine J, Valade L (2009) New J Chem 33:1268

    CAS  Google Scholar 

  50. Chen Y, Cao F, Wei RM, Zhang Y, Zhang YQ, Song Y (2014) Dalton Trans 43:3783

    CAS  PubMed  Google Scholar 

  51. Dorbes S, Valade L, Real JA, Faulmann C (2005) Chem Commun 1:69

    Google Scholar 

  52. Tejel C, Pomarede B, Legros JP, Valade L, Cassoux P, Ulmet JP (1989) Chem Mater 1:578

    CAS  Google Scholar 

  53. Cornelissen JP, Muller E, Vaassens PHS, Haasnoot JG, Reedijk J, Cassoux P (1992) Inorg Chem 31:2241

    CAS  Google Scholar 

  54. Fang Q, Thomas CWM, Zhou ZY, Yang QC, Liu Z, Yu WT, Zhu DB, Jiang MH (2002) J Chem Soc Dalton Trans 7:1377

    Google Scholar 

  55. Garreau B, Pomarède B, Cassoux P, Legros JP (1993) J Mater Chem 3:315

    CAS  Google Scholar 

  56. Pomarede B, Garreau B, Malfant I, Valade L, Cassoux P, Legros JP, Audouard A, Brossard L, Ulmet JP, Doublet ML, Canadell E (1994) Inorg Chem 33:3401

    CAS  Google Scholar 

  57. Yang H, Liu JL, Zhou LC, Ren XM (2014) Inorg Chem Front 1:426

    CAS  Google Scholar 

  58. Sun X, Yang H, Xu HY, Liu JL, Zhou LC, Ren XM (2015) Synth Metal 209:112

    CAS  Google Scholar 

  59. Yang H, An DY, Liu JL, Ren XM, Zhou LC, Wang HB (2015) RSC Adv 5:13857

    CAS  Google Scholar 

  60. Chen XR, Liu SX, Ren Q, Tian ZF, Huang XC, Wang L, Ren XM (2018) J Phys Chem B 122:12428

    CAS  PubMed  Google Scholar 

  61. Davison A, Holm RH (1967) Inorg Synth 10:8

    CAS  Google Scholar 

  62. Chen XR, Xu XY, Huang XC, Ren FF, Wang J, Liu SX, Xue C, Tao JQ (2018) Polyhedron 147:55

    CAS  Google Scholar 

  63. Schläpfer CW, Nakamoto K (1975) Inorg Chem 14:1338

    Google Scholar 

  64. Bruker (2007) APEX 2, SAINT, XPREP. Bruker AXS Inc., Madison

  65. Bruker (2001) SADABS. Bruker AXS Inc., Madison

  66. Sheldrick GM (2014) SHELXS2014 and SHELXL2014. Program for the refinement of crystal structure. University of Göttingen, Germany

    Google Scholar 

  67. Lu T, Chen F (2012) Multiwfn a multifunctional wavefunction analyzer. J Comput Chem 33:580

    PubMed  Google Scholar 

  68. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR (2009) GAUSSIAN 09, Revision A.02. Gaussian Inc., Wallingford

  69. Bonner J, Fisher ME (1964) Phys Rev 135:A640

    Google Scholar 

  70. Hall JW, Marsh WE, Weller RR, Hatfield WE (1981) Inorg Chem 20:1033

    CAS  Google Scholar 

  71. Kahn O (1993) Molecular magnetism. VCH Publishers Inc., New York, p 2

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant No. 21801218) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB150040) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Rong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1728 kb)

Appendix A: Supplementary data

Appendix A: Supplementary data

CCDC 2,023,007, 2,023,008, 2,063,630 and 2,063,631 contain the supplementary crystallographic data of 1 and 2. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+ 44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article, including the IR spectra and PXRD results, can be found in the Supporting Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XR., Zhang, ZM., Luo, M. et al. Investigation of the crystal structures and magnetic features of two bis(dithiolato)nickelate salts with flexible organic cations. Transit Met Chem 46, 353–362 (2021). https://doi.org/10.1007/s11243-021-00452-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00452-w

Navigation