Skip to main content

Advertisement

Log in

Trend analysis of precipitation records using an innovative trend methodology in a semi-arid Mediterranean environment: Cheliff Watershed Case (Northern Algeria)

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The description and analysis of rainfall trends is necessary for effective planning, management, and exploitation of water resources. This study investigates the possible trend of precipitation of 28 stations in a semi-arid Mediterranean environment (Northern Algeria) for the period from 1959 to 2019 (60 years), using a recently proposed innovative partial trend methodology. The main advantage of this new method is that it provides qualitative interpretations of trends in the high, medium, and low precipitation ranges in terms of the structure of the time series’ internal trend. An accurate database has been established thanks to the homogeneity of the data quality leading to rather satisfactory results with a precision of the spatial and temporal tendencies, thus establishing maps of regional trends: “high precipitation,” “average precipitation,” and “low precipitation” for the whole study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used in this research will be available (by the corresponding author), upon reasonable request.

References

  • Achour K, Meddi M, Zeroual A, Bouabdelli S, Maccioni P, Moramarco T (2020) Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129:1–22

    Article  Google Scholar 

  • Aiche L, Kashadji Merzouk N (1997) Estimation of wind speeds of various sites characterized by climatic differences and topographical, CEME97, Biskra

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

    Article  Google Scholar 

  • Benkaci S, Abir D, Oumellal A, Remini B (2018) Modélisation de l’érosion du bassin haut et moyen Cheliff par l’application Model builder sur ArcGis. J Mater Eng Struct 5:81–93

  • Boucefiane A (2006) Cartographie automatique des précipitations du bassin Chéllif-Zahrez. Centre Universitaire de Khemis Miliana, Algérie, Mémoire de Magistère

  • Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int J Climatol 26(3):345–381

    Article  Google Scholar 

  • Buffoni L, Maugeri M, Nanni T (1999) Precipitation in Italy from 1833 to 1996. Theor Appl Climatol 63:33–40

    Article  Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27

    Article  Google Scholar 

  • Cannarozzo M, Noto LV, Viola F (2006) Spatial distribution of rainfall trends in Sicily (1921–2000). Phys Chem Earth 31:1201–1211

    Article  Google Scholar 

  • Chaumont M, Paquin C (1971) Explanatory note of the rainfall map of Algeria at 1 / 500,000. C.C.R.M.A, Algiers

    Google Scholar 

  • Dabanlı İ, Şen Z, Yeleğen MÖ, Şişman E, Selek B, Güçlü YS (2016) Trend assessment by the innovative-Şen method. Water Resour. Manag 30(14):5193–5203

  • Demir V, Kisi O (2016) Comparison of Mann-Kendall and innovative trend method (Şen trend) for monthly total precipitation (Middle Black Sea Region, Turkey). In: 3rd International Balkans Conference on Challenges of Civil Engineering, 3-BCCCE, 19–21 May 2016. Epoka University, Tirana, Albania

  • Dinpashoh Y, Mirabbasi R, Jhajharia D, Abianeh H, Mostafaeipour A (2013) Effect of short term and long-term persistence on identification of temporal trends. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000819

  • Elouissi A, Şen Z, Habi M (2016) Algerian rainfall innovative trend analysis and its implications to Macta watershed. Arab J Geosci 9(4):303

  • Gautier F, LUBES-NIEL H, Sabatier R, Masson JM, Paturel JE, Servat E (1998) Variabilité du régime pluviométrique de l'Afrique de l'Ouest non sahélienne entre 1950 et 1989. Hydrol Sci J 43(6):921–935

  • Gemmer M, Becker S, Jiang T (2004) Observed monthly precipitation trends in China 1951–2002. Theor Appl Climatol 77:39–45

    Article  Google Scholar 

  • Ghenim A, Megnounif A (2016) Variability and trend of annual maximum daily rainfall in northern Algeria. Int J Geophys 2016(11):1–11

  • González-Rouco JF, Jiménez JL, Quesada V, Valero F, González-Rouco JF, Jiménez JL, Quesada V, Valero F (2001) Quality control and homogeneity of precipitation data in the southwest of Europe. J Clim 14(5):964–978

    Article  Google Scholar 

  • Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21(1):27–58

    Article  Google Scholar 

  • Haddad N, Rahla A (2004) Investing in Algeria, Ministry for Participation and Investment Promotion. MDPPI, Algiers

    Google Scholar 

  • Harkat S (2019) Filtre de Kalman discret à la Modélisation Hydrologique, Algérie, European University Editions ISBN: ISBN13: 978-613-8-46494-5 ISBN-10: 613846494X ; https://www.morebooks.de/store/gb/book/filtre-de-kalman-discret-%C3%A0-la- mod%C3%A9lisation-hydrologique/isbn/978-613-8-46494-5. Accessed 26 Feb 2019

  • Harkat S, Arabi M, Taleb S (2014) Impacts des activites anthropiques sur l? Erosion hydrique et la pollution de l? Eau de surface dans le bassin versant du cheliff, algerie/impacts of human activities on water erosion and pollution of surface water in the algerian cheliff watershed. Revue LJEE 19

  • Harkat S, Boukharouba K, Douaoui AEK (2016) Multi-site modeling and prediction of annual and monthly precipitation in the watershed of Cheliff (Algeria). Desalin Water Treat 57(13):5959–5970. https://doi.org/10.1080/19443994.2014.956798

    Article  Google Scholar 

  • Harkat S et al (2020) Kalman filter for spatio-temporal modeling and prediction of algerian water resources variability: case study of precipitation and stream flows at monthly and annual scales

  • Jiang T, Su B, Hartmann H (2007) Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000. Geomorphology 85:143–154

    Article  Google Scholar 

  • Kampata JM, Parida BP, Moalafhi DB (2008) Trend analysis of rainfall in the headstreams of the Zambezi River Basin in Zambia. Phys Chem Earth 33:621–625

    Article  Google Scholar 

  • Kasbadji Merzouk N (1994) ‘An evaluation of wind energy potential in Algeria’, Congrès EWEC'94. Thessaloniki, Greece

    Google Scholar 

  • Kettab A, Mitiche R, Bennacar N (2008) Water for sustainable development: issues and strategies. J Water Sci 21:247. https://doi.org/10.7202/018469ar

    Article  Google Scholar 

  • Khelfi MEA, Touaibia B, Guastaldi E (2017) Regionalisation of the “intensity-duration-frequency” curves in Northern Algeria. Arab J Geosci 10. https://doi.org/10.1007/s12517-017-3214-7

  • Khelil MA, Nichane M (2014) Climate change and water resources in Algeria: vulnerability, impact and adaptation strategy. Clim Chang Water Resour Algeria Vulnerability Impact Strat Adapt Rev Bioresources 4:1–7. https://doi.org/10.12816/0025667

    Article  Google Scholar 

  • Kisi O (2015) An innovative method for trend analysis of monthly pan evaporations. J Hydrol 527:1123–1129. https://doi.org/10.1016/j.jhydrol.2015.06.009

    Article  Google Scholar 

  • Kisi O, Ay M (2014) Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J Hydrol 513:362–375

  • Krishnakumar KN, Prasada Rao GSLHV, Gopakumar CS (2009) Rainfall trends in twentieth century over Kerala, India. Atmos Environ 43:1940–1944

  • Lazri M, Ameur S, Mohia Y (2014a) Instantaneous rainfall estimation using neural network from multispectral observations of SEVIRI radiometer and its application in estimation of daily and monthly rainfall. Adv Space Res 53(1):138–155

    Article  Google Scholar 

  • Lazri M, Soltane A, Brucker J (2014b) Analysis of the time trends of precipitation over Mediterranean region. Int J Inform Eng Electron Bus 6:38–44. https://doi.org/10.5815/ijieeb.2014.04.06

    Article  Google Scholar 

  • Lee M-H, Im E-S, Bae D-H (2019) A comparative assessment of climate change impacts on drought over Korea based on multiple climate projections and multiple drought indices. Clim Dyn 53(1–2):389–404

    Article  Google Scholar 

  • Liu Q, Yang Z, Cui B (2008) Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. J Hydrol 361:330–338

    Article  Google Scholar 

  • Longobardi A, Villani P (2010) Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int J Climatol 30(10):1538–1546

  • Lubes-Niel H, Masson J, Paturel J, Servat E (1998) Variabilité climatique et statistiques. Etude par simulation de la puissance et de la robustesse de quelques tests utilisés pour vérifier l'homogénéité de chroniques. Revue des sciences de l'eau/Journal of Water Science 11(3):383–408

  • Mate (2001) Ministry of Planning and Environment, Development of the National Strategy and Action Plan on Climate Change. Initial National Communication, Algiers

    Google Scholar 

  • Meddi M (1995) Establishment of a model explaining the spatial distribution of annual rainfall and monthly depending on morphometry. EDIL INFO-EAU review. Int Q Liaison Eau Environ 5:9–21

    Google Scholar 

  • Meddi M, Boucefiane A (2008) Impact of climate change on the renewal of underground water resources (case hydrographic basin Chéliff-Zahrez). Groundwater & Climate in Africa, Kampala, Uganda, 2008

  • Meddi M, Hubert P (2013) Impact of the modification of the rainfall regime on the water resources of the North-West of Algeria. In: Servat E, Najem W, Leduc C, Shakeel A (eds) Hydrology of the Mediterranean and semiarid regions. IAHS Publ. 278. IAHS Press, Wallingford, pp 229–235

    Google Scholar 

  • Meddi M, Assani AA, Meddi H (2010) Temporal variability of annual rainfall in the Macta and Tafna catchments, northwestern Algeria. Water Resour Manag 24:3817–3833

    Article  Google Scholar 

  • Modarres R, Silva VPR (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70:344–355

    Article  Google Scholar 

  • Öztopal A, Şen Z (2017) Innovative trend methodology applications to precipitation records in Turkey. Water Resour Manag 31:727–737

    Article  Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–2026

    Article  Google Scholar 

  • Paturel JE, Servat E, Delattre MO, Lubes-Niel H (1998) Analyse de séries pluviométriques de longue durée en Afrique de l'Ouest et Centrale non sahélienne dans un contexte de variabilité climatique. Hydrol Sci J 43(6):937–946

  • Paturel JE, Boubacar I, L’aour A, Paturel J, Boubacar I (décembre 2004) Evolution de la pluviométrie annuelle en Afrique de l’Ouest et Centrale au XXème siècle. Sud-Sciences et Technologies. SST - Numéro 13 - 2004. http://documents.irevues.inist.fr/handle/2042/30079

  • Ramadan HH, Beighley RE, Ramamurthy AS (2013) Temperature and precipitation trends in Lebanon’s largest river: the Litani basin. J Water Resour Plan Manag 139:86–95

    Article  Google Scholar 

  • Raziei T, Daneshkar P, Arasteh, B (2005) Saghafian, Annual rainfall trend in arid and semi-arid region of Iran. In: ICID 21st European Regional Conference, pp. 1–8

  • Royé D, Tedim F, Martin-Vide J, Salis M, Vendrell J, Lovreglio R, Bouillon C, Leone V (2020) Wildfire burnt area patterns and trends in Western Mediterranean Europe via the application of a concentration index. L Degrad Dev 31:311–324

    Article  Google Scholar 

  • Scorzini AR, Leopardi M (2019) Precipitation and temperature trends over central Italy (Abruzzo Region): 1951–2012. Theor Appl Climatol 135:959–977

    Article  Google Scholar 

  • Şen Z (2009) Spatial modeling principles in earth sciences. Springer, London, p 351

    Book  Google Scholar 

  • Şen Z (2012) An innovative trend analysis methodology. ASCE. J Hydrol Eng 17(9):1042–1046

    Article  Google Scholar 

  • Şen Z (2014) Trend identification simulation and application. J Hydrol Eng 19(3):635–642

    Article  Google Scholar 

  • Şen Z (2017) Innovative trend significance test and applications. Theor Appl Climatol 127(3-4):939–947

  • Şen Z, Al Alsheikh A, Al-Turbak AS, Al-Bassam AM, Al-Dakheel AM (2013) Climate change impact and runoff harvesting in arid regions. Arab J Geosci 6(1):287–295

  • Servat É, Paturel J, Lubes-Niel H, Kouamé B, Masson J, Travaglio M, Marieu B (1999) De différents aspects de la variabilité de la pluviométrie en Afrique de l'Ouest et Centrale non sahélienne. Revue des sciences de l'eau/Journal of Water Science 12(2):363–387

  • Siegel S, Castellan NJJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Subramanya UR (1994) On max domains of attraction of univariate p-max stable laws. Stat Probab Lett 19(4):271–279

  • Tabari H, Hosseinzadeh Talaee P (2011) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396(3–4):313–320

    Article  Google Scholar 

  • Taibi S, Meddi M, Souag D, Mahe G (2013) Evolution et régionalisation des précipitations au nord de l’Algérie (1936– 2009). Clim Land Surf Chang Hydrol, IAHS Publ 359:191–197

    Google Scholar 

  • Tomozeiu R, Busuioc A, Marletto V, Zinoni F, Cacciamani C (2000) Detection of changes in the summer precipitation time series of the region Emilia-Romagna, Italy. Theor Appl Climatol 67:193–200

    Article  Google Scholar 

  • Tsiros IX, Nastos P, Proutsos ND, Tsaousidis A (2020) Variability of the aridity index and related drought parameters in Greece using climatological data over the last century (1900–1997). Atmos Res 240:104914

    Article  Google Scholar 

  • Turkeş M (1996) Spatial and temporal analysis of annual rainfall variations in turkey. Int J Climatol 16:1057–1076

  • Türkeş M, Koç T, Sariş F (2009) Spatio temporal variability of precipitation total series over Turkey. Int J Climatol 29(8):1056–1074

  • UNDP UB (1989) Atelier de recherche conjointe-Equipe pluridisciplinaire de l'écosystème de la Baie de Tabounsou et de l'estuaire du Soumbouya, 19-25 Mai 1989

  • Yavuz H, Erdogan S (2012) Spatial analysis of monthly and annual precipitation trends in Turkey. Water Resour Manag 26:609–612

    Article  Google Scholar 

  • Yue S, Hashino M (2003) Long term trends of annual and monthly precipitation in Japan. J Am Water Resour Assoc 39(3):587–596

    Article  Google Scholar 

  • Zeroual A, Assani A, Meddi M (2017) Combined analysis of temperature and rainfall variability as they relate to climate indices in Northern Algeria over the 1972–2013 periods. Hydrol Res 48:584–595

    Article  Google Scholar 

  • Zhang Q, Xu CY, Zhang Z, Chen YD, Liu CL (2008) Spatial and temporal variability of precipitation over China, 1951–2005. Theor Appl Climatol Doit 95:53–68. https://doi.org/10.1007/s00704-007-0375-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the personnel of the Algerian State Meteorological Service in Algeria for the data observation, processing, and management. The authors would also like to thank the editor and one anonymous reviewer for their valuable suggestions and comments.

Funding

This research is financially supported by my own means.

Author information

Authors and Affiliations

Authors

Contributions

Samra Harkat and Ozgur Kisi conceptualized the work; Ozgur Kisi did the methodology. Samra Harkat did the data analysis and wrote the codes, calculations, and the original draft and document revision. Ozgur Kisi supervised the work, assisted in data processing and analysis, provided climate model projections and bias correction, and participated in writing-editing and editing. Samra Harkat supervised and presented the work to the International Association of Water Resources in the Southern Mediterranean Basin-Tunisia (Conference, March 2019).

Corresponding author

Correspondence to Samra Harkat.

Ethics declarations

Ethics approval

The authors confirm that this article is original research and has not been published or presented previously in any journal or conference in any language (in whole or in part).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harkat, S., Kisi, O. Trend analysis of precipitation records using an innovative trend methodology in a semi-arid Mediterranean environment: Cheliff Watershed Case (Northern Algeria). Theor Appl Climatol 144, 1001–1015 (2021). https://doi.org/10.1007/s00704-021-03520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03520-4

Navigation