Skip to main content
Log in

Modeling the Motion of an Aircraft during Vertical Landing in Crosswind Conditions

  • FLIGHT DYNAMICS AND CONTROL OF FLIGHT VEHICLES
  • Technical Notes
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The paper considers the problem of increasing the safety of landing for small unmanned aerial vehicles under unfavorable external conditions, in particular, in the presence of gusty crosswind. A mathematical model describing the landing of a small unmanned aerial vehicle in the presence of aerodynamic flows and the stabilization in the XY plane is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Zubarev, Yu.N., Fomin, D.S., Chashchin, A.N., and Zabolotnova, M.V., Application of Unmanned Aerial Vehicles in Agriculture, Vestnik Permskogo Federal’nogo Issledovatel’skogo Tsentra, 2019, no. 2, pp. 47–51.

    Google Scholar 

  2. Evtod’eva, M.G. and Oznobishchev, S.K., Combat Unmanned Systems: Modern Stage of Development, Prospects of Limitation and Control, Vestnik MGU, Seriya 25, Mezhdunarodnye Otnosheniya i Mirovaya Politika, 2019, vol. 11, no. 3, pp. 160–197.

    Google Scholar 

  3. Kuznetsov, I.E., Mel’nikov, A.V., Rogozin, E.A., and Strashko, O.V., Methodology for Accounting the Influence of Meteorological Factors on the Efficiency of Application of Unmanned Aerial Vehicles Based on System Analysis, Vestnik DGTU. Tekhnicheskie Nauki, 2018, no. 2, pp. 125–139.

    Google Scholar 

  4. Pavlovskii, V.E. and Savitskii, A.V., Neurocontroller for Operating a Quadcopter during Takeoff and Landing (Model and Modeling), Problemy Iskusstvennogo Intellekta, 2017, no. 1, pp. 42–50.

    Google Scholar 

  5. Gimadieva, T.Z., Simulation of Controlled Parachute System Guidance in the Availability of a Priori Information about Wind, Izv. Vuz. Av. Tekhnika, 2005, vol. 48, no. 4, pp. 14–16 [Russian Aeronautics (Engl. Transl.), vol. 48, no. 4, pp. 20–24].

    Google Scholar 

  6. Kuznetsov, A.G., Automation of the Landing Process of a Small Unmanned Aerial Vehicle in Special Situations, Trudy MAI, 2011, no. 45, URL: http://trudymai.ru/upload/iblock/790/avtomatizatsiya-protsessa-posadki-malogabaritnogo-bespilotnogo-letatelnogo-apparata-v-osobykh-situatsiyakh.pdf.

  7. Ngo, K.T., Solenaya, O.Ya., and Ronzhin, A.L., Analysis of Mobile Robotic Platforms for Servicing Batteries of Unmanned Aerial Vehicles, Trudy MAI, 2017, no. 95, URL: http://trudymai.ru/upload/iblock/304/Ngo_Solenaya_Ronzhin_rus.pdf.

  8. Brezoescu, A., Espinoza, T., Castillo, P., and Lozano, R., Adaptive Trajectory Following for a Fixed-Wing UAV in Presence of Crosswind, Journal of Intelligent and Robotic Systems, 2013, vol. 69, nos. 1–4, pp. 257–271.

    Article  Google Scholar 

  9. Romero, H., Salazar, S., and Lozano, R., Real-Time Stabilization of an Eight-Rotor UAV Using Optical Flow, IEEE Transactions on Robotics, 2009, vol. 25, no. 4, pp. 809–817.

    Article  Google Scholar 

  10. Girfanov, A.M., Ledyankina, O.A., and Gimadiev, R.Sh., Investigation of Modeling Possibility for Lagging of a Helicopter Operating in Transient Flight Regimes, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 4, pp. 176–178 [Russian Aeronautics (Engl. Transl.), vol. 62, no. 4, pp. 719–721].

    Google Scholar 

  11. Garkushenko, V.I., Vinogradov, S.S., and Barakos, D., Control Synthesis for an Unmanned Helicopter with Time-Delay under Uncertain External Disturbances, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 2, pp. 19–25 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 2, pp. 175–182].

    Google Scholar 

  12. Gur’yanov, A.E., Simulation of Quadrocopter Control, Inzhenernyi Vestnik, 2014, no. 8, pp. 19–25.

    Google Scholar 

  13. Shavin, M.Yu., Controlled Dynamics of a Quadrocopter with Rotary Rotors, Inzhenernyi Zhurnal: Nauka i Innovatsii, 2018, no. 4, URL: http://www.engjournal.ru/catalog/arse/adb/1755.html.

  14. Bacaër, N., A Short History of Mathematical Population Dynamics, London: Springer-Verlag, 2011, pp. 35–39.

    Book  Google Scholar 

  15. Burenko, T.B., Nesterov, V.A., and Budnik, A.P., Mathematical Study of the Flow around an Aircraft, Vestnik Voronezhskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2016, vol. 12, no. 1, pp. 15–20.

    Google Scholar 

  16. Podobed, V.A., Mathematical Modeling of Wind Loads on Port Gantry Cranes, Vestnik Murmanskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2006, no. 2, pp. 318–331.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the Agreement no. 14.577.21.0284 of June 18, 2019 (unique project identifier is RFMEFI57717X0284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Gasanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 4, pp. 192 - 196.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasanov, M.F., Pasechnikov, I.I., Krayukhin, A.V. et al. Modeling the Motion of an Aircraft during Vertical Landing in Crosswind Conditions. Russ. Aeronaut. 63, 771–775 (2020). https://doi.org/10.3103/S1068799820040273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820040273

Keywords

Navigation