Skip to main content
Log in

Functional Metal-Polymer Composite Materials with Reversible Shape Memory Effect for Aeronautical and Space Structures

  • AIRCRAFT PRODUCTION TECHNOLOGY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Theoretical calculations and experimental studies were carried out making it possible to predict the maximum value of reversible deformation of a composite material based on a polymer matrix reinforced with titanium nickelide fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Otsuka, K., Wayman, C.M., Saburi, T., Tadaki, T., Maki, T., Suzuki, Y., Van Humbeeck, J., Stalmans, R., Uchino, K., Irie, M., Melton, K.N., Ohkata, I., Miyazaki, S., Shape Memory Materials, Cambridge University Press, 1999.

    Google Scholar 

  2. Wang, Z.J., Kretov, A.S., and Shataev, P.A., Strength Design Model for Thin-Walled Structures, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 1, pp. 7–14 [Russian Aeronautics (Engl. Transl.), vol. 62, no. 1, pp. 5–13].

    Google Scholar 

  3. Hartl, D.J. and Lagoudas, D.C., Aerospace Applications of Shape Memory Alloys, Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, vol. 221, issue 4, pp. 535–552.

    Google Scholar 

  4. Kohl, M., Shape Memory Microactuators, Springer, 2004.

    Book  Google Scholar 

  5. Mertmann, M. and Vergani, G., Design and Application of Shape Memory Actuators, European Physical Journal Special Topics, 2008, vol. 158, issue 1, pp. 221–230.

    Article  Google Scholar 

  6. Khachin, V.N., Gunther, V.E., and Chernov, D.B., Two Effects of Reversible Shape Change in Titanium Nickelide, Fizika Metallov i Metallovedenie, 1976, vol. 42, issue 3, pp. 658–661.

    Google Scholar 

  7. Rao, A., Srinivasa, A.R., and Reddy, J.N., Design of Shape Memory Alloy (SMA) Actuators, Springer, 2015.

    Book  Google Scholar 

  8. Zhou, G. and Lloyd, P., Design, Manufacture and Evaluation of Bending Behavior of Composite Beams Embedded with SMA Wires, Composites Science and Technology, 2009, vol. 69, issue 13, pp. 2034–2041.

    Article  Google Scholar 

  9. Bollas, D., Pappas, P., Parthenios, J., and Galiotis, C., Stress Generation by Shape Memory Alloy Wires Embedded in Polymer Composites, Acta Materialia, 2007, vol. 55, issue 16, pp. 5489–5499.

    Article  Google Scholar 

  10. Kollerov, M.Yu., Lukina, E.A., Gusev, D.E., and Borisov, A.A., Functional Properties of Nickel–Titanium/Silicone Rubber Composite, Materialovedenie, 2018, no. 8, pp. 28–33 [Inorganic Materials: Applied Research (Engl. Transl.), 2019, vol. 10, issue 1, pp. 231–236].

    Google Scholar 

  11. Fedotov, A.A. and Tsipenko, A.V., Experimental Study of the Fatigue Stiffness Degradation for the Carbon Fiber Reinforced Plastic at Variable Temperature, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, issue 1, pp. 15–21 [Russian Aeronautics (Engl. Transl.), vol. 62, issue 1, pp. 14–21].

    Google Scholar 

  12. Lester, B.T., Baxevanis, Th., Chemisky, Y., and Lagoudas, D., Review and Perspectives: Shape Memory Alloy Composite Systems, Acta Mechanica, 2015, vol. 226, issue 12, pp. 3907–3960.

    Article  Google Scholar 

  13. Shape Memory Alloys: Modeling and Engineering Applications, Lagoudas, D.C., Ed., Springer US, 2008.

    MATH  Google Scholar 

  14. White, S.R. and Berman, J.B., Thermomechanical Response of SMA Composite Beams with Embedded Nitinol Wires in an Epoxy Matrix, J. of Intelligent Material Systems and Structures, 1998, vol. 9, issue 5, pp. 391–400.

    Article  Google Scholar 

  15. Turner, T.L., Buehrle, R.D., Cano, R.J., and Fleming, G.A., Modeling, Fabrication, and Testing of a SMA Hybrid Composite Jet Engine Chevron Concept, J. of Intelligent Material Systems and Structures, 2006, vol. 17, issue 6, pp. 483–497.

    Article  Google Scholar 

  16. Il’in, A.A. and Kollerov, M.Yu., RU Patent 2477627, Bull. Izobr., 2013, no. 8.

  17. Kollerov, M.Yu., Skvortsova, S.V., Gusev, D.E., Borisov, A.A., and Gurtovoi, S.I., RU Patent 2689574, Bull. Izobr., 2019, no. 16.

  18. Lukina, E., Kollerov, M., Meswania, J., Panin, P., Khon, A., and Blunn, G., The Influence of TiN and DLC Deposition on the Wear Resistance of Nitinol–Ti6Al4V Combination for the Medical Application, Materials Today: Proceedings, 2017, vol. 4, issue 3, part B, pp. 4675–4679.

    Google Scholar 

  19. Kollerov, M., Lukina, E., Gusev, D., Mason, P., and Wagstaff, P., Influence of the Structure on the Strain-Controlled Fatigue of Nitinol, Materials Science Forum, 2013, vols. 738–739, pp. 316–320.

    Article  Google Scholar 

  20. Concilio, A. and Lecce, L., Shape Memory Alloy Engineering: for Aerospace, Structural and Biomedical Applications, Elsevier, 2014.

    Google Scholar 

  21. Gusev, D.E., Kollerov, M.Yu., and Vinogradov, R.E., Effect of a Structure and Test Conditions on the Critical Strains and Stresses in Titanium Nickelide–Based Alloys, Deformatsiya i Razrushenie Materialov, 2018, no. 7, pp. 17–23 [Russian Metallurgy (Metally) (Engl. Transl.), vol. 2019, issue 4, pp. 309–314].

    Google Scholar 

  22. Kollerov, M.Yu., Spektor, V.S., Skoblin, A.A., Gurtovoi, S.I., Saakyan, A.V., and Gusev, D.E., Mechanical Properties of a Carbon Fiber Reinforced Plastic–Titanium Nickelide Functional Composite Material, Deformatsiya i Razrushenie Materialov, 2018, no. 2, pp. 9–13 [Russian Metallurgy (Metally) (Engl. Transl.), vol. 2019, issue 4, pp. 331–335].

    Google Scholar 

  23. Kollerov, M.Yu., Il’in, A.A., Lukina, E.A., Orlov, A.A., and Vinogradov, R.E., RU Patent 2710681, Bull. Izobr., 2020, no. 1.

Download references

ACKNOWLEDGEMENTS

The research was carried out within the framework of the basic part of the State Assignment to universities no. FSFF-2020-0017 using the equipment of the resource center for collective use “Aerospace materials and technologies” of Moscow Aviation Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kollerov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 4, pp. 155 - 162.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kollerov, M.Y., Lukina, E.A., Gusev, D.E. et al. Functional Metal-Polymer Composite Materials with Reversible Shape Memory Effect for Aeronautical and Space Structures. Russ. Aeronaut. 63, 730–738 (2020). https://doi.org/10.3103/S1068799820040224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820040224

Keywords

Navigation