Skip to main content
Log in

Behavior of solutions to the 1D focusing stochastic nonlinear Schrödinger equation with spatially correlated noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We study the focusing stochastic nonlinear Schrödinger equation in one spatial dimension with multiplicative noise, driven by a Wiener process white in time and colored in space, in the \(L^2\)-critical and supercritical cases. The mass (\(L^2\)-norm) is conserved due to the multiplicative noise defined via the Stratonovich integral, the energy (Hamiltonian) is not preserved. We first investigate both theoretically and numerically how the energy is affected by various spatially correlated random perturbations and its dependence on the discretization parameters and the schemes. We then perform numerical investigation of the noise influence on the global dynamics measuring the probability of blow-up versus scattering behavior depending on parameters of correlation kernels. Finally, we study numerically the effect of the spatially correlated noise on the blow-up behavior, and conclude that such random perturbations do not influence the blow-up dynamics, except for shifting of the blow-up center location. This is similar to what we observed for a space-time white driving noise in Millet et al. (Numerical study of solutions behavior to the 1d stochastic \(L^2\)-critical and supercritical nonlinear Schrödinger equation, 2020. arXiv:2006.10695).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. High Performance Computing (HPC) resources at Florida International University.

  2. The new part in this interpolation is that the mass is preserved before and after the refinement of a spatial interval, see [36, (4.8) and Fig. 14].

References

  1. Bang, O., Christiansen, P., If, F., Rasmussen, K., Gaididei, Y.: Temperature effects in a nonlinear model of monolayer Scheibe aggregates. Phys. Rev. E 49, 4627–4636 (1994)

    Article  Google Scholar 

  2. Budd, C.J., Chen, S., Russell, R.D.: New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations. J. Comput. Phys. 152(2), 756–789 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cazenave, T.: Semilinear Schrödinger Equations, Volume of Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  4. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14(10), 807–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Volume 152 of Encyclopedia of Mathematics and Its Applications, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  6. Dalang, R.: Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s. Electron. J. Probab. 4, 29 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Bouard, A., Debussche, A.: On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. Probab. Theory Relat. Fields 123(1), 76–96 (2002)

    Article  MATH  Google Scholar 

  8. de Bouard, A., Debussche, A.: The stochastic nonlinear Schrödinger equation in \(H^1\). Stoch. Anal. Appl. 21(1), 97–126 (2003)

    Article  MATH  Google Scholar 

  9. de Bouard, A., Debussche, A.: Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise. Ann. Probab. 33(3), 1078–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Debussche, A., Di Menza, L.: Numerical resolution of stochastic focusing NLS equations. Appl. Math. Lett. 15(6), 661–669 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Debussche, A., Di Menza, L.: Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Phys. D 162(3–4), 131–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dodson, B.: Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state. Adv. Math. 285, 1589–1618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duyckaerts, T., Roudenko, S.: Threshold solutions for the focusing 3d cubic Schrödinger equation. Rev. Mat. Iberoam. 26(1), 1–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation. Comm. Math. Phys. 334(3), 1573–1615 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, D., Xie, J., Cazenave, T.: Scattering for the focusing energy-subcritical nonlinear Schrödinger equation. Sci. China Math. 54(10), 2037–2062 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fibich, G.: The nonlinear Schrödinger equation: singular solutions and optical collapse. In: Applied Mathematical Sciences, vol. 192. Springer, Berlin (2015)

    MATH  Google Scholar 

  18. Fibich, G., Merle, F., Raphaël, P.: Proof of a spectral property related to the singularity formation for the \(L^2\) critical nonlinear Schrödinger equation. Phys. D 220(1), 1–13 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ginibre, J., Velo, G.: On a Class of Nonlinear Schrödinger Equations. I. The Cauchy Problem, General Case. J. Funct. Anal. 32(1), 1–32 (1979)

    Article  MATH  Google Scholar 

  20. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(4), 309–327 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guevara, C.D.: Global behavior of finite energy solutions to the \(d\)-dimensional focusing nonlinear Schrödinger equation. Appl. Math. Res. Express AMRX 2, 177–243 (2014)

    MATH  Google Scholar 

  22. Holmer, J., Platte, R., Roudenko, S.: Blow-up criteria for the 3D cubic nonlinear Schrödinger equation. Nonlinearity 23(4), 977–1030 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Holmer, J., Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl. Math. Res. Express AMRX 1, 31 (2007)

    MATH  Google Scholar 

  24. Holmer, J., Roudenko, S.: Divergence of infinite-variance nonradial solutions to the 3D NLS equation. Commun. Part. Differ. Equ. 35(5), 878–905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46(1), 113–129 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Kopell, N., Landman, M.: Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis. SIAM J. Appl. Math. 55(5), 1297–1323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. LeMesurier, B., Papanicolaou, G., Sulem, C., Sulem, P.-L.: The focusing singularity of the nonlinear Schrödinger equation. In: Directions in Partial Differential Equations (Madison, WI, 1985), Volume 54 of Publication of the Mathematics Research Center, the University of Wisconsin, pp. 159–201. Academic Press, Boston, MA (1987)

  28. Lifshits, M.: Lectures on Gaussian Processes. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  29. Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2), 427–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Merle, F., Raphael, P.: Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13(3), 591–642 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2) 161(1), 157–222 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Merle, F., Raphael, P.: Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Commun. Math. Phys. 253(3), 675–704 (2005)

    Article  MATH  Google Scholar 

  33. Merle, F., Raphaël, P.: Blow up of the critical norm for some radial \(L^2\) super critical nonlinear Schrödinger equations. Am. J. Math. 130(4), 945–978 (2008)

    Article  MATH  Google Scholar 

  34. Merle, F., Raphaël, P., Szeftel, J.: Stable self-similar blow-up dynamics for slightly \(L^2\) super-critical NLS equations. Geom. Funct. Anal. 20(4), 1028–1071 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Millet, A., Roudenko, S.: Well-posedness for the focusing stochastic critical and supercritical nonlinear Schrödinger equaion. Preprint (2020)

  36. Millet, A., Roudenko, S., Yang, K.: Numerical study of solutions behavior to the 1d stochastic \(L^2\)-critical and supercritical nonlinear Schrödinger equation (2020). arXiv:2005.14266

  37. Perelman, G.: Evolution of adiabatically perturbed resonant states. Asymptot. Anal. 22(3–4), 177–203 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Perelman, G.: On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2(4), 605–673 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rasmussen, K., Gaididei, Y., Bang, O., Christiansen, P.: The influence of noise on critical collapse in the nonlinear Schrödinger equation. Phys. Rev. A 204, 121–127 (1995)

    Google Scholar 

  40. Rottschäfer, V., Kaper, T.J.: Blowup in the nonlinear Schrödinger equation near critical dimension. J. Math. Anal. Appl. 268(2), 517–549 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rottschäfer, V., Kaper, T.J.: Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation. Nonlinearity 16(3), 929–961 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sulem, C., Sulem, P.-L.: The nonlinear Schrödinger equation: self-focusing and wave collapse. In: Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

  43. Tsutsumi, Y.: \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac. 30(1), 115–125 (1987)

    MathSciNet  MATH  Google Scholar 

  44. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4), 567–576 (1982/83)

  45. Yang, K., Roudenko, S., Zhao, Y.: Blow-up dynamics and spectral property in the \(L^2\)-critical nonlinear Schrödinger equation in high dimensions. Nonlinearity 31(9), 4354–4392 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, K., Roudenko, S., Zhao, Y.: Blow-up dynamics in the mass super-critical NLS equations. Phys. D 396, 47–69 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, K., Roudenko, S., Zhao, Y.: Stable blow-up dynamics in the \(L^2\)-critical and \(L^2\)-supercritical generalized Hartree equations. Stud. Appl. Math. 145(4), 647–695 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was done when the first author visited Florida International University. She would like to thank FIU for the hospitality and the financial support. A.M.’s research has been conducted within the FP2M federation (CNRS FR 2036). S.R. was partially supported by the NSF Grant DMS-1815873/1927258 as well as part of the K.Y.’s research and travel support to work on this Project came from the above Grant. A.D.R. was supported by REU under DMS-1927258 (PI: Roudenko).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Millet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix we show the distribution of the locations of blow-up center \(x_c\) as its being influenced by the noise. We provide Figs. 22, 23, 24 and 25 for each of our four examples when we run \(N_t=1000\) trials in most of them except for the right part in Fig. 25, where we did \(N_t=3000\) trials (note how much more accurate the convergence to the normal distribution is, however, this takes significantly larger computational efforts.) In Tables 12, 3 and 4 we record the mean \(\mu _{x_c}\) and variance \(\sigma ^2_{x_c}\) of the normal distribution that we obtain for the location random variable \(x_c\). Observe that the variance noticeably increases in Examples 3 and  4 in the \(L^2\)-critical case as \(\beta \) increases (similar increase is happening in these Examples in the \(L^2\)-supercritcal case, see Tables 3 and 4).

Table 1 Mean \(\mu _{x_c}\) and variance \(\sigma ^2_{x_c}\) of the location of blow-up center random variable \(x_c\). Example 1 (Gaussian decay) shown in Fig. 22.
Table 2 Table 2 Mean \(\mu _{x_c}\) and variance \(\sigma ^2_{x_c}\) of the location of blow-up center random variable \(x_c\). Example 2 (polynomial decay, \(n=2\)) shown in Fig. 23
Table 3 Mean \(\mu _{x_c}\) and variance \(\sigma ^2_{x_c}\) of the location of blow-up center random variable \(x_c\). Example 3 (Riesz kernel) shown in Fig. 24.
Table 4 Mean \(\mu _{x_c}\) and variance \(\sigma ^2_{x_c}\) of the location of blow-up center random variable \(x_c\) Example 4 (exponential kernel) shown in Fig. 25

Appendix B

Here we show Figs. 26, 27, 28 and 29 of blow-up dynamics (convergence of profiles and rates) in Examples 1 and 3.

Fig. 26
figure 26

Formation of blow-up in Example 1 (exponential decay) with \(\beta =0.5\) and \(\epsilon =0.1\): snapshots of time evolution for \(u_0=3\, e^{-x^2}\) (given in pairs of actual and rescaled solution) at different times. Each pair of graphs shows in solid blue the actual solution |u| and its rescaled version \(L^{1/\sigma } |u|\), comparing it to the normalized ground state Q in dashed red. Top row: \(L^2\)-critical (\(\sigma =2\)) case (blow-up smooths out and converges slowly to the ground state Q). Bottom row: \(L^2\)-supercritical (\(\sigma =3\)) case (blow-up profile becomes smooth and converges faster to the profile \(Q_{1,0}\))

Fig. 27
figure 27

Formation of blow-up in Example 3 (Riesz kernel) with \(\beta =0.5\) and \(\epsilon =0.1\): snapshots of time evolution for \(u_0=3\, e^{-x^2}\). For other details, see Fig. 26

Fig. 28
figure 28

Blow-up rate tracking in Example 1 (exponential decay) with \(\beta =0.5\) and \(\epsilon = 0.1\). Top row: \(L^2\)-critical (\(\sigma =2\)) case. Bottom row: \(L^2\)-supercritical case. Left: logarithmic dependence of \(\log L(t)\) vs. \(\log (T-t)\) (note in both cases the slope is 0.50). Middle: \(a(\tau _m)\) vs. \(\log L(\tau _m)\) (an extremely slow decay to zero in the top plot and rather fast leveling at a constant level in the bottom plot). Right top: dependence \(a(\tau )\) vs. \(1/ \ln (\tau )\) to confirm the logarithmic correction. Right bottom: fast convergence to a constant of the quantity \(\Vert u\Vert _{L^\infty } \left( 2a(T-t)\right) ^{\frac{1}{2\sigma } }\)

Fig. 29
figure 29

Blow-up rate tracking in Example 3 (Riesz kernel) with \(\beta =0.5\) and \(\epsilon = 0.1\). For details, see Fig. 28

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millet, A., Rodriguez, A.D., Roudenko, S. et al. Behavior of solutions to the 1D focusing stochastic nonlinear Schrödinger equation with spatially correlated noise. Stoch PDE: Anal Comp 9, 1031–1080 (2021). https://doi.org/10.1007/s40072-021-00191-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-021-00191-0

Keywords

Mathematics Subject Classification

Navigation