Skip to main content
Log in

Effect of Precipitant on Conformational State of Silk Fibroin in Ionic-Liquid Solutions

  • Published:
Fibre Chemistry Aims and scope

Silk fibroin fiber is a unique biopolymer with high potential for medical applications. Dissolution and regeneration of fibroin using traditional solvents causes conformational transformations of the native fibroin structure and poor physicomechanical characteristics of materials prepared from it. The supramolecular structure can be regulated during precipitation. Herein, regeneration of fibroin using ionic liquids was investigated using IR spectroscopy and x-ray structure analysis. MeOH was shown to be the strongest precipitant for fibroin solutions in ionic liquids and could produce a supramolecular structure close to that of native fibroin. The fibroin precipitation conditions were mollified if alcohols with hydrocarbon radicals increasing in the order C1-C4 were used as precipitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. C. S. Ki, Y. H. Park, and H.-J. Jin, Macromol. Res., 17, No. 12, 935-942 (2009); https://doi.org/10.1007/BF03218639.

    Article  CAS  Google Scholar 

  2. L. D. Koh, J. Yeo, et al., Mater. Sci. Eng., C, 86, 151-172 (2018); https://doi.org/10.1016/j.msec.2018.01.007.

    Article  CAS  Google Scholar 

  3. K. A. Trabbic and P. Yager, Macromolecules, 31, 462-471 (1998); https://doi.org/10.1021/ma9708860.

    Article  CAS  Google Scholar 

  4. L.-D. Koh, Y. Cheng, et al., Prog. Polym. Sci., 46, 86-110 (2015); https://doi.org/10.1016/.progpolymsci.2015.02.001.

    Article  CAS  Google Scholar 

  5. J. Yao, H. Masuda, et al., Macromolecules, 35, 6-9 (2002); https://doi.org/10.1021/ma011335j.

    Article  CAS  Google Scholar 

  6. D. M. Phillips, L. F. Drummy, et al., J. Mater. Chem., 15, No. 39, 4206-4208 (2005); DOI: https://doi.org/10.1039/B510069K.

    Article  CAS  Google Scholar 

  7. S. Ling, Z. Qin, C. Li, et al., Nat. Commun., 8, Art. No. 1387, 1-12 (2017); https://www.nature.com/articles/s41467-017-00613-5.

  8. Q. Wang, Q. Chen, et al., Biomacromolecules, 14, 285-289 (2013); https://doi.org/10.1021/bm301741q.

    Article  CAS  PubMed  Google Scholar 

  9. H. J. Cho, C. S. Ki, et al., Int. J. Biol. Macromol., 51, No. 3, 336-341 (2012); https://doi.org/10.1016/j.ijbiomac.2012.06.007.

    Article  CAS  PubMed  Google Scholar 

  10. G. Cheng, X. Wang, et al., J. Appl. Polym. Sci., 132, No. 22, 41959 (2015); https://doi.org/10.1002/app.41959.

    Article  CAS  Google Scholar 

  11. J. Nam and Y. H. Park, J. Appl. Polymer. Sci., 81, No. 12, 3008-3021 (2001); https://doi.org/10.1002/app.1751.

    Article  CAS  Google Scholar 

  12. H. Yamada, H. Nakao, et al., Mater. Sci. Eng., C, 14, 41-46 (2001); https://doi.org/10.1016/S0928-4931(01)00207-7.

    Article  Google Scholar 

  13. A. I. Susanin, E. S. Sashina, et al., Khim. Volokna, No. 2, 12-19 (2017); https://doi.org/10.1007/s10692-017-9849-z.

    Article  CAS  Google Scholar 

  14. E. S. Sashina, A. M. Bochek, et al., Zh. Prikl. Khim., 79, No. 6, 881-888 (2006); 10.1134/S1070427206060012 [English translation, Russ. J. Appl. Chem., 79, 869-876 (2006)].

  15. E. S. Sashina, N. P. Novoselov, et al., Vysokomol. Soedin., Ser. A, 47, No. 10, 1832-1840 (2005).

    CAS  Google Scholar 

  16. D. M. Phillips, L. F. Drummy, et al., J. Am. Chem. Soc., 126, 14350-14351 (2004); https://doi.org/10.1021/ja046079f.

    Article  CAS  PubMed  Google Scholar 

  17. E. S. Sashina, A. Yu. Golubikhin, and A. I. Susanin, Khim. Volokna, No. 4, 34-39 (2015); 10.1007/s10692-016-9675-8 [English translation, Fibre Chem., 47, 253-259 (2015)].

  18. R. A. Mantz, D. M. Fox, et al., Z. Naturforsch., A: Phys. Sci., 62, 275-280 (2007); https://doi.org/10.1515/zna-2007-5-608.

    Article  CAS  Google Scholar 

  19. A. A. Lozano-Perez, M. G. Montalban, et al., J. Appl. Polym. Sci., 132, No. 12, 41702, 1-8 (2015); https://doi.org/10.1002/app.41702.

  20. C. Zhang, X. Chen, and Z. Shao, ACS Biomater. Sci. Eng., 2, 12-18 (2016); https://doi.org/10.1021/acsbiomaterials.5b00149.

    Article  CAS  PubMed  Google Scholar 

  21. Q. Wang, Y. Yang, et al., Biomacromolecules, 13, No. 6, 1875-1881 (2012); https://doi.org/10.1021/bm300387z.

    Article  CAS  PubMed  Google Scholar 

  22. S. Shang, L. Zhu, and J. Fan, Carbohydr. Polym., 86, 462-468 (2011); [10.1016/j.carbpol. 2011.04.064]; 10.1016/j.molliq.2011.09.001.

  23. L. Zhou, Q. Wang, et al., Polymer, 54, 5035-5042 (2013); https://doi.org/10.1016/j.polymer.2013.07.002.

    Article  CAS  Google Scholar 

  24. S. S. Silva, T. C. Santos, et al., Green Chem., 14, 1463-1470 (2012).

    Article  CAS  Google Scholar 

  25. Y. Yao, K. S. Mukuze, et al., Cellulose, 21, 675-684 (2014); https://doi.org/10.1007/s10570-013-0117-y.

    Article  CAS  Google Scholar 

  26. Y. Yao, E. Zhang, et al., Cellulose, 22, 625-635 (2015); https://doi.org/10.1007/s10570-014-0520-z.

    Article  CAS  Google Scholar 

  27. A. I. Susanin, E. S. Sashina, et al., Zh. Prikl. Khim., 91, No. 4, 578-583 (2018); 10.1134/S1070427218040171 [English translation, Russ. J. Appl. Chem., 91, 647-652 (2018)].

  28. J. R. Harjani, R. D. Singer, et al., Green Chem., 11, No. 1, 83-90 (2009); DOI: https://doi.org/10.1039/B811814K.

    Article  CAS  Google Scholar 

  29. A. B. Pereiro, A. Rodriguez, et al., J. Chem. Eng. Data, 56, No. 12, 4356–4363 (2011); DOI: https://doi.org/10.1021/je2001446.

    Article  CAS  Google Scholar 

  30. T. Heinze, K. Schwikal, and S. Barthel, Macromol. Biosci., 5, No. 6, 520-525 (2005); https://doi.org/10.1002/mabi.200500039.

    Article  CAS  PubMed  Google Scholar 

  31. D. A. Kashirskii, “Effect of the structure of 1-alkyl-3-methylpyridinium ionic liquids on their dissolving power for cellulose,” Candidate Dissertation, SPbGUTD, St. Petersburg, 2016, 155 pp.

    Google Scholar 

  32. H. Dou and B. Zuo, J. Text. Inst., 106, No. 3, 311-319 (2015); https://doi.org/10.1080/00405000.2014.919065.

    Article  CAS  Google Scholar 

  33. X. Wu, X. Wu, et al., Int. J. Biol. Macromol., 102, 1202-1210 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.011.

    Article  CAS  PubMed  Google Scholar 

  34. Q. Lu, X. Hu, et al., Acta Biomater., 6, No. 4, 1380-1387 (2010); https://doi.org/10.1016/j.actbio.2009.10.041.

    Article  CAS  PubMed  Google Scholar 

  35. H.-Y. Wang and Y.-Q. Zhang, Soft Matter, 9, No. 1, 138-145 (2013); DOI: https://doi.org/10.1039/C2SM26945G.

    Article  CAS  Google Scholar 

  36. L. Li, Y. Xiong, et al., J. Appl. Polym. Sci., 132, No. 47, 42822 (2015); https://doi.org/10.1002/app.42822.

    Article  CAS  Google Scholar 

  37. S.-W. Ha, Y. H. Park, and S. M. Hudson, Biomacromolecules, 4, 488-496 (2003); https://doi.org/10.1021/bm0255948.

    Article  CAS  PubMed  Google Scholar 

  38. L.-P. Yan, J. M. Oliveira, et al., Acta Biomater., 8, 289-301 (2012); https://doi.org/10.1016/j.actbio.2011.09.037.

    Article  CAS  PubMed  Google Scholar 

  39. H.-J. Jin, J. Park, et al., Adv. Funct. Mater., 15, No. 8, 1241-1247 (2005); https://doi.org/10.1002/adfm.200400405.

    Article  CAS  Google Scholar 

  40. T. Asakura, A. Kuzuhara, et al., Macromolecules, 18, 1841-1845 (1985); https://doi.org/10.1021/ma00152a009.

    Article  CAS  Google Scholar 

  41. U.-J. Kim, J. Park, et al., Biomaterials, 26, No. 15, 2775-2785 (2005); https://doi.org/10.1016/j.biomaterials.2004.07.044.

    Article  CAS  PubMed  Google Scholar 

  42. Y. Tamada, Biomacromolecules, 6, No. 6, 3100-3106 (2005); https://doi.org/10.1021/bm050431f.

    Article  CAS  PubMed  Google Scholar 

  43. C. Yan, B. Yang, and Z. Yu, Analyst, 139, 1967-1972 (2014); DOI: https://doi.org/10.1039/C4AN90084G.

    Article  CAS  PubMed  Google Scholar 

  44. X. Hu, D. Kaplan, and P. Cebe, Macromolecules, 39, No. 18, 6161-6170 (2006); https://doi.org/10.1021/ma0610109.

    Article  CAS  Google Scholar 

  45. X. Chen, Z. Shao, et al., Proteins, 68, No. 1, 223-231 (2007); https://doi.org/10.1002/prot.21414.

    Article  CAS  PubMed  Google Scholar 

  46. X. Chen, D. P. Knight, et al., Polymer, 42, No. 5, 09969-09974 (2001); https://doi.org/10.1016/S0032-3861(01)00541-9.

    Article  CAS  Google Scholar 

  47. H. Yoshimizu, and T. Asakura, J. App. Polym. Sci., 40, No. 9-10, 1745-1756 (1990); https://doi.org/10.1002/app.1990.070400928.

    Article  CAS  Google Scholar 

  48. T. Asakura, A. Kuzuhara, et al., Macromolecules, 18, No. 10, 1841-1845 (1985); https://doi.org/10.1021/ma00152a009.

    Article  CAS  Google Scholar 

  49. I. C. Um, H. Y. Kweon, et al., Int. J. Biol. Macromol., 29, No. 2, 91-97 (2001); https://doi.org/10.1016/S0141-8130(01)00159-3.

    Article  CAS  PubMed  Google Scholar 

  50. F. Paquet-Mercier, T. Lefevre, et al., Soft Matter, 9, No. 1, 208-215 (2013); DOI: https://doi.org/10.1039/C2SM26657A.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Susanin.

Additional information

Translated from Khimicheskie Volokna, No. 4, pp. 22-27, July—August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susanin, A.I., Sashina, E.S., Maniukiewicz, W. et al. Effect of Precipitant on Conformational State of Silk Fibroin in Ionic-Liquid Solutions. Fibre Chem 52, 253–258 (2020). https://doi.org/10.1007/s10692-021-10191-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10191-4

Navigation