Skip to main content
Log in

The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Sprouts are vegetable foods rich in phytonutrients, such as glucosinolates, phenolics, and isoflavones. Many studies have shown that sprouts also have high concentrations of vitamins and minerals. In addition to the high concentration of nutrients, sprouts can present a reduction of anti-nutritional factors such as phytates, tannins, and oxalates, which increases the bioaccessibility of minerals. However, their nutritional composition depends on several factors, such as the type of sprout and the germination conditions. In recent years, these foods have been highly demanded because they are associated to many health benefits. Moreover, germination is an easy and fast process, and does not depend on specific climatic conditions (potentially more sustainable to growth). The use of sprouts for the elaboration of food products can be a good strategy to increase the nutritional value of certain products that are widely consumed worldwide. In this sense, studies that evaluated the impact of adding sprouted grains on the nutritional value of some products, as well as the effect on their sensory properties were searched in the scientific literature. Most of them used germinated grain flours to replace wheat flour in food products. The satisfactory results of these products were associated with the type of sprout used and with the level of replacement of the wheat flour. This review briefly explored the nutritional benefits and the sensory acceptance of food products made with added sprouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Montemurro M, Pontonio E, Gobbetti M, Rizzello CG (2019) Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int J Food Microbiol 302:47–58. https://doi.org/10.1016/j.ijfoodmicro.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  2. Lim JG, Park HM, Yoon KS (2020) Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant. Food Sci Nutr 8(1):694–702. https://doi.org/10.1002/fsn3.1358

    Article  CAS  PubMed  Google Scholar 

  3. Kapravelou G, Martínez R, Perazzoli G, Sánchez González C, Llopis J, Cantarero S, Goua M, Bermano G, Prados J, Melguizo C, Aranda P, López-Jurado M, Porres JM (2020) Germination improves the polyphenolic profile and functional value of mung bean. Antioxidants 9:1–22. https://doi.org/10.3390/antiox9080746

    Article  CAS  Google Scholar 

  4. Medhe S, Jain S, Anal AK (2019) Effects of sprouting and cooking processes on physicochemical and functional properties of moth bean. J Food Sci Technol 56(4):2115–2125. https://doi.org/10.1007/s13197-019-03692-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Magkos F, Tetens I, Bügel SG, Felby C, Schacht SR, Hill JO, Ravussin E, Astrup A (2020) A perspective on the transition to plant-based diets: a diet change may attenuate climate change, but can it also attenuate obesity and chronic disease risk? Adv Nutr 11(1):1–9. https://doi.org/10.1093/advances/nmz090

    Article  PubMed  Google Scholar 

  6. Singh AK, Rehal J, Kaur A, Jyot G (2015) Enhancement of attributes of cereals by germination and fermentation: a review. Crit Rev Food Sci Nutr 55(11):1575–1589. https://doi.org/10.1080/10408398.2012.706661

  7. Kim MJ, Kwak HS, Kim SS (2018) Effects of germination on protein, γ-aminobutyric acid, phenolic acids, and antioxidant capacity in wheat. Molecules 23:1–13. https://doi.org/10.3390/molecules23092244

  8. Xu M, Rao J, Chen B (2020) Phenolic compounds in germinated cereal and pulse seeds: classification, transformation, and metabolic process. Crit Rev Food Sci Nutr 60(5):740–759. https://doi.org/10.1080/10408398.2018.1550051

    Article  CAS  PubMed  Google Scholar 

  9. Tian B, Xie B, Shi J, Wu J, Cai Y, Xu T, Xue S, Deng Q (2010) Physicochemical changes of oat seeds during germination. Food Chem 119:1195–2200. https://doi.org/10.1016/j.foodchem.2009.08.035

    Article  CAS  Google Scholar 

  10. Nelson K, Stojanovska L, Vasiljevic T, Mathai M (2013) Germinated grains: a superior whole grain functional food? Can J Physiol Pharmacol 91(6):429–441. https://doi.org/10.1139/cjpp-2012-0351

    Article  CAS  PubMed  Google Scholar 

  11. Khang DT, Dung TN, Elzaawely AA, Xuan TD (2016) Phenolic profiles and antioxidant activity of germinated legumes. Foods 5:1–10. https://doi.org/10.3390/foods5020027

    Article  CAS  Google Scholar 

  12. Santos CS, Silva B, Valente LMP, Gruber S, Vasconcelos MW (2020) The effect of sprouting in lentil (Lens culinaris) nutritional and microbiological profile. Foods 9(4):1–11. https://doi.org/10.3390/foods9040400

    Article  CAS  Google Scholar 

  13. Kumari S, Chang SK (2016) Effect of cooking on isoflavones, phenolic acids, and antioxidant activity in sprouts of Prosoy soybean (Glycine max). J Food Sci 81(7):C1679–C1691. https://doi.org/10.1111/1750-3841.13351

    Article  CAS  PubMed  Google Scholar 

  14. Bains K, Uppal V, Kaur H (2014) Optimization of germination time and heat treatments for enhanced availability of minerals from leguminous sprouts. J Food Sci Technol 51(5):1016–1020. https://doi.org/10.1007/s13197-011-0582-y

    Article  CAS  PubMed  Google Scholar 

  15. Cauchon KE, Hitchins AD, Smiley RD (2017) Comparison of Listeria monocytogenes recoveries from spiked mung bean sprouts by the enrichment methods of three regulatory agencies. Food Microbiol 66:40–47. https://doi.org/10.1016/j.fm.2017.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreno DA, Pérez-Balibrea S, García-Viguera C (2006) Phytochemical quality and bioactivity of edible sprouts. Nat Prod Commun 1(11):1037–1048. https://doi.org/10.1177/1934578X0600101120

    Article  CAS  Google Scholar 

  17. Reed E, Ferreira CM, Bell R, Brown EW, Zheng J (2018) Plant-microbe and abiotic factors influencing Salmonella survival and growth on alfalfa sprouts and swiss chard microgreens. Appl Environ Microbiol 84(9):1–11. https://doi.org/10.1128/AEM.02814-17

    Article  Google Scholar 

  18. Proctor ME, Hamacher M, Tortorello ML, Archer JR, Davis JP (2001) Multistate outbreak of Salmonella serovar Muenchen infections associated with alfalfa sprouts grown from seeds pretreated with calcium hypochlorite. J Clin Microbiol 39(10):3461–3465. https://doi.org/10.1128/JCM.39.10.3461-3465.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strassle PD, Gu W, Bruce BB, Gould LH (2019) Sex and age distributions of persons in foodborne disease outbreaks and associations with food categories. Epidemiol Infect 147:1–5. https://doi.org/10.1017/S0950268818003126

    Article  Google Scholar 

  20. Ding H, Fu TJ, Smith MA (2013) Microbial contamination in sprouts: how effective is seed disinfection treatment? J Food Sci 78(4):R495–R501. https://doi.org/10.1111/1750-3841.12064

    Article  CAS  PubMed  Google Scholar 

  21. Carstens CK, Salazar JK, Darkoh C (2019) Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Front Microbiol 10:1–15. https://doi.org/10.3389/fmicb.2019.02667

    Article  Google Scholar 

  22. Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A (2019) Sprouted grains: a comprehensive review. Nutrients 11(2):1–29. https://doi.org/10.3390/nu11020421

    Article  CAS  Google Scholar 

  23. Peñas E, Martínez-Villaluenga C (2020) Advances in production, properties and applications of sprouted seeds. Foods 9:1–3. https://doi.org/10.3390/foods9060790

    Article  CAS  Google Scholar 

  24. Yang Y, Meier F, Lo JA, Yuan W, Sze VLP, Chung HJ et al (2013) Overview of recent events in the microbiological safety of sprouts and new intervention technologies. Compr Rev Food Sci Food Saf 12:265–280. https://doi.org/10.1111/1541-4337.12010

    Article  Google Scholar 

  25. Abellán Á, Domínguez-Perles R, Moreno DA, García-Viguera C (2019) Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients 11:1–22. https://doi.org/10.3390/nu11020429

    Article  CAS  Google Scholar 

  26. Ma X, Liu Y, Liu J, Zhang J, Liu R (2020) Changes in starch structures and in vitro digestion characteristics during maize. Food Sci Nutr 8(3):1700–1708. https://doi.org/10.1002/fsn3.1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mäkinen OE, Arendt EK (2015) Nonbrewing applications of malted cereals, pseudocereals, and legumes: a review. J Am Soc Brew Chem 73(3):223–227. https://doi.org/10.1094/ASBCJ-2015-0515-01

    Article  CAS  Google Scholar 

  28. You SY, Oh SG, Han HM, Jun W, Hong YS, Chung HJ (2016) Impact of germination on the structures and in vitro digestibility of starch from waxy brown rice. Int J Biol Macromol 82:863–870. https://doi.org/10.1016/j.ijbiomac.2015.11.023

    Article  CAS  PubMed  Google Scholar 

  29. Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT – Food Sci Technol 40:1–11. https://doi.org/10.1016/j.lwt.2005.07.023

    Article  CAS  Google Scholar 

  30. Roche A, Ross E, Walsh N, O'Donnell K, Williams A, Klapp M, Fullard N, Edelstein S (2017) Representative literature on the phytonutrients category: phenolic acids. Crit Rev Food Sci Nutr 57(6):1089–1096. https://doi.org/10.1080/10408398.2013.865589

    Article  CAS  PubMed  Google Scholar 

  31. Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16. https://doi.org/10.1016/j.foodres.2017.09.026

    Article  CAS  PubMed  Google Scholar 

  32. Paucar-Menacho LM, Martínez-Villaluenga C, Duenas M, Frias J, Penas E (2017) Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT – Food Sci Technol 76:236–244. https://doi.org/10.1016/j.lwt.2016.07.064

    Article  CAS  Google Scholar 

  33. Gan R-Y, Lui W-Y, Wu K, Chan C-L, Dai S-H, Sui Z-Q, Corke H (2017) Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review. Trends Food Sci Technol 59:1–14. https://doi.org/10.1016/j.tifs.2016.11.010

    Article  CAS  Google Scholar 

  34. Gan RY, Wang MF, Lui WY, Wu K, Corke H (2016) Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts. Int J Food Sci Technol 51:2090–2098. https://doi.org/10.1111/ijfs.13185

  35. Marti A, Cardone G, Pagani MA (2021) Sprouted cereal grains and products. In: Pojic M, Tiwari U (eds) Innovative processing technologies for healthy grains, 1st edn. Wiley, New Jersey, pp 113–141

  36. Gilani GS, Cockell KA, Sepehr E (2005) Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 88(3):967–987

    Article  CAS  Google Scholar 

  37. Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6(8):2446–2458. https://doi.org/10.1002/fsn3.846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang G, Xu Z, Gao Y, Huang X, Zou Y, Yang T (2015) Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. J Food Sci 80(5):H1111–H1119. https://doi.org/10.1111/1750-3841.12830

    Article  CAS  PubMed  Google Scholar 

  39. Kumar V, Sinha AK, HPS M, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959. https://doi.org/10.1016/j.foodchem.2009.11.052

  40. Suma PF, Urooj A (2014) Influence of germination on bioaccessible iron and calcium in pearl millet (Pennisetum typhoideum). J Food Sci Technol 51(5):976–981. https://doi.org/10.1007/s13197-011-0585-8

    Article  CAS  PubMed  Google Scholar 

  41. Ghavidel RA, Prakash J (2007) The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT – Food Sci Technol 40:1292–1299. https://doi.org/10.1016/j.lwt.2006.08.002

  42. Lemmens E, Moroni AV, Pagand J, Heirbaut P, Ritala A, Karlen Y, Lê KA, den Broeck HC, Brouns FJPH, Brier N, Delcour JA (2019) Impact of cereal seed sprouting on its nutritional and technological properties: a critical review. Compr Rev Food Sci Food Saf 18(1):305–328. https://doi.org/10.1111/1541-4337.12414

    Article  PubMed  Google Scholar 

  43. Boukid F, Prandi B, Vittadini E, Francia E, Sforza S (2018) Tracking celiac disease-triggering peptides and whole wheat flour quality as function of germination kinetics. Food Res Int 112:345–352. https://doi.org/10.1016/j.foodres.2018.06.055

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Xu M, Wu H, Jing L, Gong B, Gou M, Zhao K, Li W (2018) The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. J Food Sci Technol 55(12):5142–5552. https://doi.org/10.1007/s13197-018-3460-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sangsukiam T, Duangmal K (2017) A comparative study of physico-chemical properties and antioxidant activity of freeze-dried mung bean (Vigna radiata) and adzuki bean (Vigna angularis) sprout hydrolysate powders. Int J Food Sci Technol 52:1971–1982. https://doi.org/10.1111/ijfs.13469

    Article  CAS  Google Scholar 

  46. Sandoval-Sicairos ES, Domínguez-Rodríguez M, Montoya-Rodríguez A, Milán-Noris AK, Reyes-Moreno C, Milán-Carrillo J (2020) Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in mexican amaranth. Plant Foods Hum Nutr 75:192–199. https://doi.org/10.1007/s11130-020-00798-z

    Article  CAS  PubMed  Google Scholar 

  47. Perales-Sánchez JXK, Reyes-Moreno C, Gómez-Favela MA, Milán-Carrillo J, Cuevas-Rodríguez EO, Valdez-Ortiz A, Gutiérrez-Dorado R (2014) Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum Nutr 69:196–202. https://doi.org/10.1007/s11130-014-0430-0

    Article  CAS  PubMed  Google Scholar 

  48. Argüelles-López OD, Reyes-Moreno C, Gutiérrez-Dorado R, Sánchez-Osuna MF, López-Cervantes J, Cuevas-Rodríguez EO, Milán-Carrillo J, Perales-Sánchez JXK (2018) Functional beverages elaborated from amaranth and chia flours processed by germination and extrusion. Biotecnia XX(3):135–145. https://doi.org/10.18633/biotecnia.v20i3.721

    Article  Google Scholar 

  49. Chavarín-Martínez CD, Gutiérrez-Dorado R, Perales-Sánchez JXK, Cuevas-Rodríguez EO, Milán-Carrillo J, Reyes-Moreno C (2019) Germination in optimal conditions as effective strategy to improve nutritional and nutraceutical value of underutilized mexican blue maize seeds. Plant Foods Hum Nutr 74:192–199. https://doi.org/10.1007/s11130-019-00717-x

    Article  CAS  PubMed  Google Scholar 

  50. Charoenthaikij P, Jangchud K, Jangchud A, Prinyawiwatkul W, Tungtrakul P (2010) Germination conditions affect selected quality of composite wheat-germinated brown rice flour and bread formulations. J Food Sci 75(6):S312–S318. https://doi.org/10.1111/j.1750-3841.2010.01712.x

    Article  CAS  PubMed  Google Scholar 

  51. Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119:770–778. https://doi.org/10.1016/j.foodchem.2009.07.032

  52. Gómez-Favela MA, Gutiérrez-Dorado R, Cuevas-Rodríguez EO, Canizalez-Román VA, del Rosario León-Sicairos C, Milán-Carrillo J, Reyes-Moreno C (2017) Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods Hum Nutr 72:345–352. https://doi.org/10.1007/s11130-017-0631-4

    Article  CAS  PubMed  Google Scholar 

  53. Hernandez-Aguilar C, Dominguez-Pacheco A, Palma Tenango M, Valderrama-Bravo C, Soto Hernández M, Cruz-Orea A, Ordonez-Miranda J (2020) Lentil sprouts: a nutraceutical alternative for the elaboration of bread. J Food Sci Technol 57(5):1817–1829. https://doi.org/10.1007/s13197-019-04215-5

    Article  CAS  PubMed  Google Scholar 

  54. Menon L, Majumdar SD, Ravi U (2015) Development and analysis of composite flour bread. J Food Sci Technol 52(7):4156–4165. https://doi.org/10.1007/s13197-014-1466-8

    Article  PubMed  Google Scholar 

  55. Suárez-Estrella D, Bresciani A, Iametti S, Marengo M, Pagani MA, Marti A (2020) Effect of sprouting on proteins and starch in quinoa (Chenopodium quinoa Willd.). Plant Foods Hum Nutr 75(4):635–641. https://doi.org/10.1007/s11130-020-00864-6

    Article  CAS  PubMed  Google Scholar 

  56. Ojha P, Adhikari R, Karki R, Mishra A, Subedi U, Karki TB (2018) Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Sci Nutr 6(1):47–53. https://doi.org/10.1002/fsn3.525

    Article  CAS  PubMed  Google Scholar 

  57. Zilic S, Basic Z, Sukalovic VH-T, Maksimovic V, Jankovic M, Filipovic M (2014) Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour? Int J Food Sci Technol 49:1040–1047. https://doi.org/10.1111/ijfs.12397

    Article  CAS  Google Scholar 

  58. Świeca M, Dziki D, Gawlik-Dziki U (2017) Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour. Food Chem 228:643–648. https://doi.org/10.1016/j.foodchem.2017.02.052

    Article  CAS  PubMed  Google Scholar 

  59. Gawlik-Dziki U, Dziki D, Pietrzak W, Nowak R (2017) Phenolic acids prolife and antioxidant properties of bread enriched with sprouted wheat flour. J Food Biochem 41:1–9. https://doi.org/10.1111/jfbc.12386

    Article  CAS  Google Scholar 

  60. Tian W, Ehmke L, Miller R, Li Y (2019) Changes in bread quality, antioxidant activity, and phenolic acid composition of wheats during early-stage germination. J Food Sci 84(3):457–465. https://doi.org/10.1111/1750-3841.14463

    Article  CAS  PubMed  Google Scholar 

  61. Tomé-Sánchez I, Martín-Diana AB, Peñas E, Bautista-Expósito S, Frias J, Rico D, González-Maillo L, Martinez-Villaluenga C (2020) Soluble phenolic composition tailored by germination conditions accompany antioxidant and anti-inflammatory properties of wheat. Antioxidants 9(5):1–20. https://doi.org/10.3390/antiox9050426

    Article  CAS  Google Scholar 

  62. Cardone G, D'Incecco P, Pagani MA, Marti A (2020) Sprouting improves the bread-making performance of whole wheat flour (Triticum aestivum L.). J Sci Food Agric 100:2453–2459. https://doi.org/10.1002/jsfa.10264

    Article  CAS  PubMed  Google Scholar 

  63. Patil SB, Khan K (2011) Germinated brown rice as a value added rice product: a review. J Food Sci Technol 48(6):661–667. https://doi.org/10.1007/s13197-011-0232-4

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jimenez D, Miraballes M, Gambaro A, Lobo M, Samman N (2020) Baby purees elaborated with Andean crops. Influence of germination and oils in physico-chemical and sensory characteristics. LWT – Food Sci Technol 124:108901. https://doi.org/10.1016/j.lwt.2019.108901

    Article  CAS  Google Scholar 

  65. Salas-López F, Gutiérrez-Dorado R, Milán-Carrillo J, Cuevas-Rodríguez EO, CanizalezRomán VA, León-Sicairos CR, Reyes-Moreno C (2018) Nutritional and antioxidant potential of a desert underutilized legume tepary bean (Phaseolus acutifolius). Optimization of germination bioprocess. Food Sci Technol 38:254–262. https://doi.org/10.1590/fst.25316

  66. Beaulieu JC, Reed SS, Obando-Ulloa JM, Boue SM, Cole MR (2020) Green processing, germinating and wet milling brown rice (Oryza sativa) for beverages: physicochemical effects. Foods 9(1016):1–19. https://doi.org/10.3390/foods9081016

    Article  CAS  Google Scholar 

  67. Beaulieu JC, Reed SS, Obando-Ulloa JM, McClung AM (2020) Green processing protocol for germinating and wet milling brown rice for beverage formulations: sprouting, milling and gelatinization effects. Food Sci Nutr 8:2445–2457. https://doi.org/10.1002/fsn3.1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Fontanive Miyahira.

Ethics declarations

Disclosure Statement

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyahira, R.F., Lopes, J.d. & Antunes, A.E.C. The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. Plant Foods Hum Nutr 76, 143–152 (2021). https://doi.org/10.1007/s11130-021-00888-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00888-6

Keywords

Navigation