Skip to main content

Advertisement

Log in

Concentrations, sources, and health risk associated with exposure to BTEX at ten sites located in an urban-industrial area in the Bajio Region, Mexico

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The purpose of this study was to study the spatial and temporal variation of BTEX in the ambient air of Leon, Guanajuato, Mexico, to assess the inhalation health risk to the local population from exposure to these compounds. BTEX were monitored using passive samplers during two sampling seasons (rainy 2019 and cold dry 2020), and samples were analyzed by gas chromatography with flame ionization detection. BTEX ratios and meteorological analysis suggested that the concentrations were mainly influenced by vehicular and local sources located to the SE of the study area. The sum of average concentrations of BTEX in rainy and cold dry seasons were of 3.52 ± 0.36 µg m−3 and 4.11 ± 0.38 µg m−3, respectively. Mean concentrations were of 0.74, 1.59, 0.48, and 0.69 µg m−3, for benzene, toluene, ethylbenzene, and p-xylene, respectively. The highest levels of BTEX were found in sites with an urban land-use type of medium-intensity industrial zones with high population density. The lower BTEX concentrations found during the rainy season were probably due to higher solar radiation and temperatures that favored their photochemical degradation. Bi-variate and multivariate analysis showed that the BTEX species were strongly correlated with each other and with temperature and solar radiation, indicating that they originated from common sources. Benzene and toluene correlated strongly with CO and SO2, indicating that they could originate from vehicular exhaust emissions and high-sulfur fuel combustion sources. The health risk assessment showed that the Leon city adult population is at possible risk of developing cancer in their lifetime due to exposure to the measured benzene levels, but indicated no risk of contracting respiratory and cardiovascular diseases due to inhalation of BTEX. The results suggest the need for BTEX emissions reduction policies in the study area, as well as the establishment of a Mexican standard that regulates the maximum permissible limit of these pollutants in ambient air in order to protect the health of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2007a) Toxicological profile for Benzene. Atlanta, GA: US Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/ToxProfiles/tp3.pdf. Accessed 15 May 2020

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2007b) Toxicological profile for Xylenes. Atlanta, GA: US Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/ToxProfiles/tp71-c1-b.pdf. Accessed 15 May 2020

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2010) Toxicological profile for Ethylbenzene. Atlanta, GA: US Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/ToxProfiles/tp110-c1-b.pdf. Accessed 18 May 2020

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2015) Toxicological profile for Toluene. Atlanta, GA: US Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/ToxProfiles/tp56-c1-b.pdf. Accessed 18 May 2020

  • Amodio M, de Gennaro G, Marzocca A et al (2013) Assessment of impacts produced by anthropogenic sources in a little city near an important industrial area (Modugno, Southern Italy). Sci World J 2013:1–10. https://doi.org/10.1155/2013/150397

    Article  Google Scholar 

  • Baghani AN, Sorooshian A, Heydari M, Sheikhi R, Golbaz S, Ashournejad Q, Kermani M, Golkhorshidi F, Barkhourdari A, Jafari AJ, Delikhoon M, Shahsavani A (2019) A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran. Environ Pollut 247:607–617

    Article  CAS  Google Scholar 

  • Bari MA, Kindzierski WB (2017) Concentrations sources and human health risk of inhalation exposure to air toxics en Edmonton Canada. Chemosphere 173:160771

    Article  Google Scholar 

  • Bozkurt Z, Üzmez ÖÖ, Döğeroğlu T, Artun G, Gaga EO (2018) Atmospheric concentrations of SO2, NO2, ozone and VOCs in Düzce, Turkey using passive air samplers: sources, spatial and seasonal variations and health risk estimation. Atmos Pollut Res 9(6):1146–1156. https://doi.org/10.1016/j.apr.2018.05.001

    Article  CAS  Google Scholar 

  • Buczynska AJ, Krata A, Stranger M, Godoi AFL, Deutsch VK, Bencs L, Naveau I, Roekens E, Van Grieken R (2009) Atmospheric BTEX concentrations in an area with intensive street traffic. Atmos Environ 43:311–318

    Article  CAS  Google Scholar 

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manage Assoc 44(7):881–899. https://doi.org/10.1080/1073161X.1994.10467290

  • Cerón Bretón JG, Cerón Bretón RM, Martínez Morales S, Kahl JDW, Guarnaccia C, Lara Severino RC, Rangel Marrón M, Ramírez Lara E, Espinosa Fuentes ML, Uc Chi MP, Sánchez GL (2020) Health risk assessment of the levels of BTEX in ambient air of one urban site located in Leon, Guanajuato Mexico during two climatic seasons. Atmosphere 11:165. https://doi.org/10.3390/atmos11020165

    Article  CAS  Google Scholar 

  • Civan MY, Elbir T, Seyfioglu R, Kuntasal OO, Bayram A, Dogan G, Yurdakul S, Andic O, Muezzinoglu A, Sofuoglu SC, Pekey H, Pekey B, Bozlaker A, Odabasi M, Tuncel G (2015) Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene. Atmos Environ 103:102–113

    Article  CAS  Google Scholar 

  • Cruz LPS, Santos DF, Dos Santos IF, Gomes IVC, Santos AVS, Souza KSPP (2020) Exploratory analysis of the atmospheric levels of BTEX, criteria air pollutants and meteorological parameters in a tropical urban area in Northeastern Brazil. Microchem J 152(104265):1–9

    Google Scholar 

  • De Donno A, De Giorgi M, Bagordo F, Grassi T, Idolo A, Serio F, Ceretti E, Feretti D, Villarini M, Moretti M, Carducci A, Verani M, Bonetta S, Pignata C, Bonizzoni S, Bonetti A, Gelatti U, on behalf of the MAPEC_LIFE Study Group (2018) Health risk associated with exposure to PM10 and benzene in three Italian towns. Int J Environ Res Public Health 15:1672

    Article  Google Scholar 

  • Dehghani M, Fazlzadeh M, Sorooshian A, Reza Tabatabaeee H, Miri M, Baghani AN, Delikhoon M, Mahvi MH, Rashidi M (2018) Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol Environ Saf 155:133–143. https://www.sciencedirect.com/science/article/abs/pii/S0147651318301556. Accessed 15 Feb 2020

  • Deghani MH, Baghani AN, Fazizadeh M, Ghaffari HR (2019) Exposure and risk assessment of BTEX in indoor air of gyms in Tehran, Iran. Microchem J 150:104135. https://www.sciencedirect.com/science/article/abs/pii/S0026265X19314420. Accessed 15 Mar 2020

  • Elbir T, Cetin B, Cetin E, Bayram A, Odabasi M (2005) Characterization of volatile organic compounds (VOCs) and their sources in the air of Izmir Turkey. Environ Monit Assess 133:149–160. https://doi.org/10.1007/s10661-006-9568-z

    Article  CAS  Google Scholar 

  • European Standard EN 14662-5:2005 (2005) Ambient air quality – Standard method for measurement of benzene concentrations – Part 5: Diffusive sampling followed by solvent desorption and GC. Directive 2000/69/EC of the European Parliament and of the Council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air

  • European Environment Agency (2008) EC-Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJ L 152:1–44. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en. Accessed 18 Aug 2020

  • Feretti D, Ceretti E, De Donno A, Moretti M, Carducci A, Bonetta S, Marrese MR, Bonetti A, Covolo L, Bagordo F et al (2014) Monitoring air pollution effects on children for supporting public health policy: the protocol of the prospective cohort MAPEC study. BMJ Open 4:e006096

    Article  CAS  Google Scholar 

  • Golkhorshidi F, Sorooshian A, Jafari AJ, Baghani AN, Kermani M, Kalantary RR, Ashournejad Q, Delikhoon M (2019) On the nature and health impacts of BTEX in a populated middle eastern city: Tehran Iran. Atmos Pollut Res 10(3):921–930

    Article  CAS  Google Scholar 

  • Guo W, Wang T, Simpson IJ, Blake DR, Yu XM, Kwok YH et al (2004) Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos Environ 38:4551–4560

    Article  CAS  Google Scholar 

  • Hazrati S, Rostami R, Fazlzadeh M, Pourfarzi F (2016) Benzene, toluene, ethylbenzene and xylene concentrations in atmospheric ambient air of gasoline and CNG refueling stations. Air Qual Atmos Health 9:403–409. https://doi.org/10.1007/s11869-015-0349-0

    Article  CAS  Google Scholar 

  • Hoque R, Khillare P, Agarwal T, Shridhar V, Balachandran S (2008) Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci Total Environ 392:30–40

    Article  CAS  Google Scholar 

  • Instituto Municipal de Planeación, IMPLAN León, Guanajuato (2017) Cartografía base, Plano de zonificación de usos y destinos del Municipio de León. Planeación Estratégica del Desarrollo Integral, Uso de suelo y asignaciones autorizadas para el municipio de León, Guanajuato. https://www.implan.gob.mx/pdf/thumb/PLANO_DE_ZONIFICACION_DE_USOS_Y_DESTINOS_DEL_MUNICIPIO_DE_LEON.pdf. Accessed 17 Mar 2020

  • Instituto Nacional de Ecología y Cambio Climático- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (INECC- CIATEJ) (2014) Evaluación de PM2.5, compuestos orgánicos volátiles y ozono para definir medidas de control en la zona metropolitana de Guadalajara: Etapa III., 20 de Noviembre de 2014. https://www.gob.mx/cms/uploads/attachment/file/191426/2014_Evaluaci_n_de_PM2.5.pdf. Accessed 26 Oct 2019

  • Instituto Nacional de Ecología y Cambio Climático (2015) Evaluación de Compuestos Orgánicos Volátiles en el Área Metropolitana de Monterrey. INECC, Coordinación General de Contaminación y Salud Ambiental, Mayo 2015, Magaña Reyes M, Hernández Flores AL, Blanco Jiménez S, 71 p. https://www.gob.mx/cms/uploads/attachment/file/370440/8._Informe_Final_de_COVs_Monterrey.pdf. Accessed Dec 2 2019

  • Instituto Nacional de Estadística y Geografía (2015) Encuesta intercensal. https://www.inegi.org.mx/programas/intercensal/2015/. Accessed 15 March 2020

  • Instituto Nacional de Estadística y Geografía (2017) Parque vehicular, Registro Administrativo de la Industria Automotriz de Vehículos Ligeros (RAIAVL) y Registro Administrativo de la Industria Automotriz de Vehículos Pesados (RAIAVP). https://www.inegi.org.mx/temas/vehiculos/. Accessed 15 Mar 2020

  • Instituto Nacional de Seguridad e Higiene en el Trabajo INSHT España (1992) Método MTA/MA-030/A92 Determinación de vapores orgánicos en aire ambiente–Método de adsorción en carbón activo/cromatografía de gases. Centro Nacional de Verificación de Maquinaria Camino de la Dinamita, s/n Monte Basatxu-Cruces - 48903 BARACALDO, VIZCAYA, ESPAÑA. https://www.insst.es/documents/94886/359043/MA_030_A92.pdf/ac88773d-81a9-4408-854d-d2451d16a2c7. Accessed 15 May 2020

  • Kerchich Y, Kerbachi R (2012) Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers. J Air Waste Manag Assoc 62(12):1370–1379. https://doi.org/10.1080/10962247.2012.712606

    Article  CAS  Google Scholar 

  • Keymeulen R, Gögényi M, Héberger K, Priksane A, Lagenhove HV (2001) Benzene, toluene, ethylbenzene and xylenes in ambient air and Pinus sylvestris L. needles: a comparative study between Belgium Hungary and Latvia. Atmos Environ 35:6327–6335. https://doi.org/10.1016/S1352-2310(01)00424-1

    Article  CAS  Google Scholar 

  • Kumar A, Singh D, Kumar K, Singh BB, Jain VK (2018) Distribution of VOCs in urban and rural atmospheres of subtropical India: temporal variation, source attribution, ratios, OFP and risk assessment. Sci Total Environ 613–614:492–501. https://doi.org/10.1016/j.scitotenv.2017.09.096

    Article  CAS  Google Scholar 

  • Kuntasal OO, Karman D, Wang D, Tuncel S, Tuncel G (2005) Determination of volatile organic compounds in microenvironments by multibed adsorption and short-path thermal desorption followed by gas chromatographic-mass spectrometric analysis. J Chromatogr A 1099:43–54. https://doi.org/10.1016/j.chroma.2005.08.093

    Article  CAS  Google Scholar 

  • Kwon J, Weisel CP, Turpin BJ, Zhang JF, Korn LR, Morandi MT, Stock TH, Colome S (2006) Source proximity and outdoor-residential VOC concentrations: results from the RIOPA study. Environ Sci Technol 40(13):4074–4082. https://doi.org/10.1021/es051828u

    Article  CAS  Google Scholar 

  • Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Nadzir MSM, Othman M et al (2019) BTEX compositions and its potential health impacts in Malaysia. Chemosphere 237:124451. https://doi.org/10.1016/j.chemosphere.2019.124451

    Article  CAS  Google Scholar 

  • Marć M, Namieśnik J, Zabiegała B (2014) BTEX concentration levels in urban air in the area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Qual Atmos Health 7:489–504. https://doi.org/10.1007/s11869-014-0247-x

    Article  CAS  Google Scholar 

  • Márc M, Bielawska M, Wardencki W, Namiésnik J, Zabiegala B (2015) The influence of meteorological conditions and anthropogenic activities on the seasonal fluctuations of BTEX in the urban air of the Hanseatic City of Gdansk, Poland. Environ Sci Pollut Res 22:11940–11954. https://doi.org/10.1007/s11356-015-4484-9

    Article  CAS  Google Scholar 

  • Márc M, Bielawska M, Simeonov V, Namiesnik J, Zabiegala B (2016) The effect of anthropogenic activity on BTEX, NO2, SO2 and CO concentrations in an urban area of the spa city of Sopot and medium industrialized city of Tczew located in North Poland. Environ Res 147:513–524

    Article  Google Scholar 

  • Miri M, Shendi MRA, Ghaffari HR et al (2016) Investigation of outdoor BTEX: concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 163:601–609. https://doi.org/10.1016/j.chemosphere.2016.07.088

    Article  CAS  Google Scholar 

  • Monod A, Sive BC, Avino P, Chen T, Blake DR, Rowland FS (2001) Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos Environ 35:135–149. https://doi.org/10.1016/S1352-2310(00)00274-0

    Article  CAS  Google Scholar 

  • Mukerjee S, Smith LA, Thoma ED, Oliver KD, Whitaker DA, Wu T et al (2016) Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers. J Air Waste Manag Assoc 66(5):492–498. https://doi.org/10.1080/10962247.2016.1147505

    Article  CAS  Google Scholar 

  • Nabizadeh R, Sorooshian A, Delikhoon M, Baghani AN, Golbaz S, Aghael M, Barkhordari a, (2020) Characteristics and health effects of volatile organic compounds emissions during paper and cardboard recycling. Sustain Cities Soc 56:102005

    Article  Google Scholar 

  • Nabizadeh R, Sorooshian A, Delikhoon M, Baghani AN, Golbaz S, Aghael M (2020) Dataset on specifications, carcinogenic and non-carcinogenic risk of volatile organic compounds during recycling paper and cardboard. Data Brief 29:105296

    Article  Google Scholar 

  • Ontario Ministry of the Environment (OME) (2012) Ontario’s Ambient Air Quality Criteria. Standards Development Branch, Ontario Ministry of the Environment, April 2012, PIBS # 6570e01. http://www.airqualityontario.com/downloads/AmbientAirQualityCriteria.pdf. Accessed 18 Aug 2020

  • Parra MA, Elustondo D, Bermejo R, Santamaría JM (2009) Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO2) in a medium size city in Northern Spain. Sci Total Environ 407:999–1009

    CAS  Google Scholar 

  • Parvizimehr A, Baghani AN, Hoseini M, Sorooshian A, Cuevas-Robles A, Fararouel M, Deghani M, Delikhoon M, Barkhordari A, Shahsavani S, Badeenezhad A (2020) On the nature of heavy metals in PM10 for an urban desert city in the Middle East: Shiraz Iran. Microchem J 154:104596

    Article  CAS  Google Scholar 

  • Pekey B, Yilma H (2011) The use of passive sampling monitor spatial trends of volatile organic compounds (VOCs) at one industrial city of Turkey. Microchem J 9(2):213–219. https://doi.org/10.1016/j.microc.2010.09.006

    Article  CAS  Google Scholar 

  • Regulation of Zoning and land use of the Municipality of León, Guanajuato (2000) Reglamento de Zonificación y Usos de suelo para el municipio de León, Guanajuato. Ayuntamiento del Municipio de León, Sesión ordinaria celebrada 13 de Abril de 2000. https://www.leon.gob.mx/transparencia/sistemas/archivos/legislacion/REGLAMENTODEZONIFICACIONYUSOSDELSUELOPARAELMUNICIPIODELEON,GUANAJUATO_70.pdf. Accessed November 26, 2020

  • Secretaría del Medio Ambiente de la Ciudad de México (2015) Calidad del aire en la Ciudad de México, informe 2015. SMA-CDMX Dirección General de Gestión de la Calidad del Aire, Dirección de Monitoreo Atmosférico. http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/informe_anual_calidad_aire_2015v3/files/downloads/Informe2015v3.pdf. Accessed October 15 2019

  • Sexton K, Linder SH, Marko D, Bethel H, Lupo PJ (2007) Comparative assessment of air pollution-related health risks in Houston. Environ Health Perspect 115:1388–1393. https://doi.org/10.1289/ehp.10043

    Article  Google Scholar 

  • Shuai J, Kim S, Ryu H, Park J, Lee CK, Kim GB, Ultra VU Jr, Yang W (2018) Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health 18(528):1–13. https://doi.org/10.1186/s12889-018-5454-1

    Article  CAS  Google Scholar 

  • SMAOT-Guanajuato (2017) Secretaría del Medio Ambiente y Ordenamiento Territorial. Inventario de emisiones de contaminantes criterio y precursores del Estado de Guanajuato. Air Criteria Pollutants Emissions Inventory of Guanajuato State, 2017. Guanajuato, Guanajuato, Mexico. https://smaot.guanajuato.gob.mx/sitio/calidad-del-aire/4/Inventario-de-Emisiones-de-Contaminantes-Criterio.file:///D:/Inventario%20de%20Contaminantes%20Criterio_2017.pdf. Accessed 2 Dec 2019

  • Srivastava A, Mazumdar D (2011) Monitoring and Reporting VOCs in Ambient Air. In: Mazzeo NA (ed) Air Quality Monitoring, Assessment and Management. IntechOpen, London, pp 1614-1618. https://doi.org/10.5772/16774. Available from https://www.intechopen.com/books/air-quality-monitoring-assessment-and-management/monitoring-and-reporting-vocs-in-ambient-air. Accessed 2 Mar 2020

  • Statistical Software and Data Analysis Add-on for Excel XLSTAT (2016) https://www.xlstat.com/en/. Accessed April 15, 2020

  • Surfer Software Version 14 (2017) www.goldensoftware.com/products/surfer. Accessed 15 May 2020

  • United States Environmental Protection Agency (1989) Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A), Office of Emergency and Remedial Response. Washington, D.C., USA, EPA/540/1–89/002. https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf. Accessed November 27, 2020

  • United States Environmental Protection Agency (IRIS-US EPA) (1999) Integrated Risk Information System (IRIS) on Ethylbenzene. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. https://iris.epa.gov/static/pdfs/0051_summary.pdf. Accessed November 26, 2020

  • United States Environmental Protection Agency (IRIS-US EPA) (2002) Integrated Risk Information System (IRIS). Toxicological review of benzene; EPA/635/R-02/001F; Washington, DC, USA. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0276tr.pdf. Accessed November 26, 2020

  • United States Environmental Protection Agency (IRIS-US EPA) (2003) Toxicological Review of Xylenes: In support of Summary Information Integrated Risk Information System (IRIS); EPA/635/R-03/001; Washington, DC, USA. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0270tr.pdf. Accessed November 26, 2020

  • United States Environmental Protection Agency (IRIS-US EPA) (2005) Toxicological Review of Toluene: In support of Summary Information Integrated Risk Information System (IRIS); EPA/635/R-05/004; Washington, DC, USA. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0118tr.pdf. Accessed November 26, 2020

  • United States Environmental Protection Agency (2011) Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Office of Emergency and Remedial Response, Washington D.C., USA. Available on line: http://www.epa.gov/sites/production/files/2015-09/documents/partf_200901_final.pdf. Accessed on 28 November 2020

  • Villanueva F, Tapia A, Lara S, Salas MA (2018) Indoor and outdoor air concentrations of volatile organic compounds and NO2 in schools of urban, industrial and rural areas in Central-Southern Spain. Sci Total Environ 622:222–235

    Article  Google Scholar 

  • World Health Organization Regional Office for Europe (1987) Air quality guidelines for Europe. WHO Regional Office for Europe, Copenhagen. https://apps.who.int/iris/handle/10665/107364. Accessed May 19, 2020

  • Yamamoto N, Okayasu H, Murayama S, Mori S, Hunahashi K, Suzuki K (2000) Measurements of volatile organic compounds in the urban atmosphere of Yokohama, Japan by an automated gas chromatographic system. Atmos Environ 34:4441–4446

    Article  CAS  Google Scholar 

  • Zhang Y, Mu Y, Liu J, Mellouki A (2012) Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing China. J Environ Sci 24(1):124–130. https://doi.org/10.1016/S1001-0742(11)60735-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Air Quality Information System of the State of Guanajuato (SEICA) for their support in the field work, sampling, and provision of meteorological parameters and air quality data to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Griselda Ceron-Breton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceron-Breton, J.G., Cerón Bretón, R.M., Kahl, J.D.W. et al. Concentrations, sources, and health risk associated with exposure to BTEX at ten sites located in an urban-industrial area in the Bajio Region, Mexico. Air Qual Atmos Health 14, 741–761 (2021). https://doi.org/10.1007/s11869-021-00976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-00976-1

Keywords

Navigation