Skip to main content
Log in

The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers’ equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A novel fourth-order three-point compact operator for the nonlinear convection term uux is provided in this paper. The operator makes the numerical analysis of higher-order difference schemes become possible for a wide class of nonlinear evolutionary equations under the unified framework. We take the classical viscous Burgers’ equation as an example and establish a new conservative fourth-order implicit compact difference scheme based on the method of order reduction. A detailed theoretical analysis is carried out by the discrete energy argument and mathematical induction. It is rigorously proved that the difference scheme is conservative, uniquely solvable, stable, and unconditionally convergent in discrete \(L^{\infty }\)-norm. The convergence order is two in time and four in space, respectively. Furthermore, we derive a three-level linearized compact difference scheme for viscous Burgers’ equation based on the proposed operator. All numerically theoretical results similar to that of the nonlinear numerical scheme are inherited completely; meanwhile, it is more time saving. Applying the compact operator to other more complex and higher-order nonlinear evolutionary equations is feasible, including Benjamin-Bona-Mahony-Burgers’ equation, Korteweg-de Vries equation, Kuramoto-Sivashinsky equation, and classification to name a few. Numerical results demonstrate that the presented schemes for Burgers’ equation can achieve second-order accuracy in time and fourth-order accuracy in space in \(L^{\infty }\)-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G.D.: Finite difference discretization of the kuramoto-Sivashinsky equation. Numer. Math. 63(1), 1–11 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D.: Finite difference discretization of the cubic schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asaithambi, A.: Numerical solution of the Burgers’ equation by automatic differentiation. Appl. Math. Comput. 216(9), 2700–2708 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Aswin, V.S., Awasthi, A., Rashidi, M.M.: A differential quadrature based numerical method for highly accurate solutions of Burgers’ equation. Numer. Methods Partial Differ. Equ. 33(6), 2023–2042 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather. Rev. 43(4), 163–170 (1915)

    Article  Google Scholar 

  6. Besse, C., Mésognon-Gireau, B., Noble, P.: Artificial boundary conditions for the linearized benjamin-Bona-Mahony equation. Numer. Math. 139 (2), 281–314 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhatt, H.P., Khaliq, A.Q.M.: Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation. Comput. Phys. Commun. 200, 117–138 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonkile, M.P., Awasthi, A., Lakshmi, C., Mukundan, V., Aswin, V.S.: A systematic literature review of Burgers’ equation with recent advances. Pramana-J Phys. 90(6), 69 (2018)

    Article  Google Scholar 

  9. Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chu, P.C., Fan, C.: A three-point combined compact difference scheme. J. Comput. Phys. 140(2), 370–399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9(3), 225–236 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Egidi, N., Maponi, P., Quadrini, M.: An integral equation method for the numerical solution of the Burgers equation. Comput. Math. Appl. 76 (1), 35–44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eilbeck, J.C., McGuire, G.R.: Numerical study of the regularized long-wave equation i: Numerical methods. J. Computational Phys. 19(1), 43–57 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation. J. Sci. Comput. 53(1), 102–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gülsu, M.: A finite difference approach for solution of Burgers’ equation. Appl. Math. Comput. 175(2), 1245–1255 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Guo, B.Y.: A class of difference scheme for two-dimensional vorticity equations with viscous fluids. Acta Mathematics Sinica 17(4), 242–258 (1974)

    MathSciNet  Google Scholar 

  17. Guo, B.Y.: Difference Methods for Partial Differential Equations. Science Press, Beijing (1988)

    Google Scholar 

  18. Guo, B.Y.: Error setimation of Hermite spectral method for nonlinear partial differential equations. Math. Comput. 68(227), 1067–1078 (1999)

    Article  MATH  Google Scholar 

  19. Guo, B.Y., Ma, H.P., Tadmor, E.: Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39(4), 1254–1268 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hassanien, I.A., Salama, A.A., Hosham, H.A.: Fourth-order finite difference method for solving Burgers’ equation. Appl. Math. Comput. 170(2), 781–800 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Hopf, E.: The partial differential equation ut + uux = μuxx. Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MathSciNet  Google Scholar 

  22. Kuo, P.Y., Sanz-Serna, J.M.: Convergence of methods for the numerical solution of the Korteweg-de Vries equation. IMA J. Numer. Anal. 1(2), 215–221 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kundu, S., Pani, A.K.: Finite element approximation to global stabilization of the Burgers’ equation by Neumann boundary feedback control law. Adv. Comput. Math. 44(2), 541–570 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laforgue, J.G.L., O’Malley, R.E. Jr: Shock layer movement for Burgers’ equation. 332–347 (1995)

  25. Liao, W.: An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation. Appl. Math. Comput. 206(2), 755–764 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Liao, W.: A fourth-order finite-difference method for solving the system of two-dimensional Burgers’ equations. Internat. J. Numer. Methods Fluids 64(5), 565–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Novikov, S.P.: The periodic problem for the Korteweg-de Vries equation. I. Funkcional. Anal. i Prilož,en. 8(3), 54–66 (1974)

    MathSciNet  Google Scholar 

  28. Pettersson, P., Iaccarino, G., Nordström, J.: Numerical analysis of the Burgers’ equation in the presence of uncertainty. J. Comput. Phys. 228 (22), 8394–8412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramadan, M.A., El-Danaf, T.S., Alaal, F.E.I.A.: A numerical solution of the Burgers’ equation using septic B-splines. Chaos Solitons Fractals 26(4), 1249–1258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sari, M., Gürarslan, G.: A sixth-order compact finite difference scheme to the numerical solutions of Burgers’ equation. Appl. Math. Comput. 208(2), 475–483 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Seydaoğlu, M., Erdoğan, U., Öziş, T.: Numerical solution of Burgers’ equation with high order splitting methods. J. Comput. Appl. Math. 291, 410–421 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, H., Sun, Z.Z.: On two linearized difference schemes for Burgers’ equation. Int. J. Comput. Math. 92(6), 1160–1179 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, Z.Z.: An unconditionally stable and O(τ2 + h4) order \(l_{\infty }\) convergent difference scheme for linear parabolic equations with variable coefficients. Numer. Methods Partial Differ. Equ. 17(6), 619–631 (2001)

    Article  Google Scholar 

  34. Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  35. Tabatabaei, A.H.A.E., Shakour, E., Dehghan, M.: Some implicit methods for the numerical solution of Burgers’ equation. Appl. Math. Comput. 191(2), 560–570 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Xie, S., Li, G., Yi, S., Heo, S.: A compact finite difference method for solving Burgers’ equation. Internat. J. Numer. Methods Fluids 62(7), 747–764 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Wu, H., Ma, H.P., Li, H.Y.: Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers’ equation. SIAM J. Numer. Anal. 41(2), 659–672 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Q., Wang, X., Sun, Z.Z.: The pointwise estimates of a conservative difference scheme for the Burgers’ equation. Numer. Methods Partial Differ. Equ. 36(6), 1611–1628 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 36(6), A2865–A2886 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Jan S. Hesthaven in École Polytechnique Fédérale de Lausanne (EPFL) for valuable comments and suggestions.

Funding

Sun was supported by the Natural Science Foundation of China under Grant 11671081. Zhang was supported in part by project funded by China Postdoctoral Science Foundation under Grant 2018M642131 when he studied in Southeast University, in part by the Natural Science Foundation of China under Grant 11501514, and in part by the Visiting Scholar Program of China Scholarship Council under Grant 201908330528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Zhang.

Additional information

Communicated by: Jan Hesthaven

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Direct proof of the convergence of the difference scheme in L 2-norm

Appendix. Direct proof of the convergence of the difference scheme in L 2-norm

The result and direct proof of L2-norm error estimate for the convergence of the difference scheme (3.14)–(3.18) are listed as follows.

Theorem A.1

Let {u(x,t), v(x,t)} be the solution of (3.1)–(3.4) and \(\{{u_{i}^{k}},\ {v_{i}^{k}} | 0 \leqslant i \leqslant M, 0 \leqslant k \leqslant N\}\) be the solution of the difference scheme (3.14)–(3.18). Denote

$${e_{i}^{k}} = {U_{i}^{k}}-{u_{i}^{k}}, \quad {f_{i}^{k}} = {V_{i}^{k}}-{v_{i}^{k}}, \quad 0 \leqslant i \leqslant M, 0 \leqslant k \leqslant N,$$

and

$$ c_{13}= \frac12\left( \frac{2{c_{3}^{2}}}{\nu } + \nu + \frac{c_{3}}2\right), \quad c_{14} = \left( \nu + \frac1{2\nu}\right) {c_{1}^{2}}L, \quad c_{15} = \exp\left\{3c_{13}T\right\} \cdot \sqrt{\frac{c_{14}}{2c_{13}}}. $$

If \(2c_{13}\tau \leqslant 1/3\), then we have:

$$ \|e^{k}\| \leqslant c_{15}(\tau^{2}+h^{4}),\quad 0 \leqslant k \leqslant N. $$
(A.1)

Proof

It is easy to know that (A.1) holds for k = 0.

Taking an inner product of (3.41) with \(e^{k+\frac {1}{2}}\), we have:

$$ \begin{array}{@{}rcl@{}} && \left( \delta_{t}e^{k+\frac{1}{2}},e^{k+\frac{1}{2}}\right) + \left( \psi(U^{k+\frac{1}{2}},U^{k+\frac{1}{2}}) - \psi(u^{k+\frac{1}{2}},u^{k+\frac{1}{2}}),e^{k+\frac{1}{2}} \right) \\ &&-\frac{h^{2}}{2}\left( \psi(V^{k+\frac{1}{2}},U^{k+\frac{1}{2}})-\psi(v^{k+\frac{1}{2}},u^{k+\frac{1}{2}}),e^{k+\frac{1}{2}}\right)-\nu \left( f^{k+\frac{1}{2}},e^{k+\frac{1}{2}}\right) = \left( P^{k+\frac{1}{2}},e^{k+\frac{1}{2}}\right), \\ && \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad 0 \leqslant k \leqslant N-1. \end{array} $$
(A.2)

Using Lemma 2.1, Cauchy-Schwartz inequality, and inequality (2.4), we have:

$$ \begin{array}{@{}rcl@{}} && \left( f^{k+\frac{1}{2}},e^{k+\frac{1}{2}}\right) \\ &\leqslant & -|e^{k+\frac{1}{2}}|_{1}^{2} -\frac{h^{2}}{18}\|f^{k+\frac{1}{2}}\|^{2} + \frac{h^{2}}{12} \left( f^{k+\frac{1}{2}},Q^{k+\frac{1}{2}}\right) + \left( Q^{k+\frac{1}{2}},e^{k+\frac{1}{2}}\right) \\ &\leqslant & -\frac{h^{2}}{18}\|f^{k+\frac{1}{2}}\|^{2} + \frac{h^{2}}6\left( \frac19\|f^{k+\frac12}\|^{2} + \frac9{16}\|Q^{k+\frac{1}{2}}\|^{2}\right) + \left( \frac12\|Q^{k+\frac{1}{2}}\|^{2} + \frac12\|e^{k+\frac{1}{2}}\|^{2}\right) \\ &= & - \frac{h^{2}}{27}\|f^{k+\frac12}\|^{2} + \left( \frac{3h^{2}}{32} + \frac12\right)\|Q^{k+\frac{1}{2}}\|^{2} + \frac12\|e^{k+\frac{1}{2}}\|^{2}. \end{array} $$
(A.3)

By Lemmas 2.2, 2.3 and (3.39), computing arrives at:

$$ \begin{array}{@{}rcl@{}} && - \left( \psi(U^{k+\frac{1}{2}},U^{k+\frac{1}{2}}) - \psi(u^{k+\frac{1}{2}},u^{k+\frac{1}{2}}),e^{k+\frac{1}{2}}\right)\\ &=& -\left( \psi(e^{k+\frac{1}{2}},U^{k+\frac{1}{2}}),e^{k+\frac{1}{2}}\right)\\ &=& - \frac{h}{3} \sum\limits_{i=1}^{M-1} \left[e_{i}^{k+\frac{1}{2}}{\varDelta}_{x} U_{i}^{k+\frac{1}{2}}+ {\varDelta}_{x}(e^{k+\frac{1}{2}}U^{k+\frac{1}{2}})_{i} \right]e_{i}^{k+\frac{1}{2}}\\ &=& - \frac{h}{3} \sum\limits_{i=1}^{M-1} (e_{i}^{k+\frac{1}{2}})^{2} \cdot {\varDelta}_{x} U_{i}^{k+\frac{1}{2}}- \frac{h}{6} \sum\limits_{i=1}^{M-1} \frac{U_{i+1}^{k+\frac{1}{2}}-U_{i}^{k+\frac{1}{2}}}{h} \cdot e_{i}^{k+\frac{1}{2}}e_{i+1}^{k+\frac{1}{2}}\\ &\leqslant & \frac{c_{3}}{2}\|e^{k+\frac{1}{2}}\|^{2} \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} && \frac{h^{2}}{2}\left( \psi(V^{k+\frac{1}{2}},U^{k+\frac{1}{2}})-\psi(v^{k+\frac{1}{2}},u^{k+\frac{1}{2}}),e^{k+\frac{1}{2}}\right) \\ &= & \frac{h^{2}}2\left( \psi(f^{k+\frac{1}{2}},U^{k+\frac{1}{2}}),e^{k+\frac{1}{2}}\right) \\ &= & \frac{h^{3}}6 \sum\limits_{i=1}^{M-1} \left[f_{i}^{k+\frac{1}{2}}{\varDelta}_{x}U_{i}^{k+\frac{1}{2}} +{\varDelta}_{x}(f^{k+\frac{1}{2}}U^{k+\frac{1}{2}})_{i}\right]e_{i}^{k+\frac{1}{2}} \\ &=& \frac{h^{3}}6 \sum\limits_{i=1}^{M-1} f_{i}^{k+\frac{1}{2}}e_{i}^{k+\frac{1}{2}}{\varDelta}_{x}U_{i}^{k+\frac{1}{2}} -\frac{h^{3}}6\sum\limits_{i=1}^{M-1}f_{i}^{k+\frac{1}{2}}U_{i}^{k+\frac{1}{2}}{\varDelta}_{x}e_{i}^{k+\frac{1}{2}} \\ &\leqslant & \frac{c_{3}h^{2}}{6} \|f^{k+\frac{1}{2}}\|\cdot\|e^{k+\frac{1}{2}}\| + \frac{c_{3}h^{2}}{6}\|f^{k+\frac{1}{2}}\|\cdot |e^{k+\frac{1}{2}}|_{1} \\ &\leqslant & \frac{h^{2}}6\left( \frac\nu9\|f^{k+\frac12}\|^{2} + \frac{9{c_{3}^{2}}}{4\nu}\|e^{k+\frac12}\|^{2}\right) + \frac{h^{2}}6\left( \frac\nu9\|f^{k+\frac12}\|^{2} + \frac{9{c_{3}^{2}}}{4\nu}|e^{k+\frac12}|_{1}^{2}\right) \\ &\leqslant & \frac{\nu h^{2}}{27}\|f^{k+\frac12}\|^{2} + \left( \frac{3{c_{3}^{2}}h^{2}}{8\nu} + \frac{3{c_{3}^{2}}}{2\nu }\right)\|e^{k+\frac12}\|^{2}. \end{array} $$
(A.4)

Substituting (A.3)–(A.4) into (A.2) and combining with (3.8) and (3.9), we can obtain:

$$ \begin{array}{@{}rcl@{}} & & \frac{1}{2\tau}(\|e^{k+1}\|^{2}-\|e^{k}\|^{2})+ \frac{\nu h^{2}}{27}\|f^{k+\frac{1}{2}}\|^{2} \\ &\leqslant & \left( \frac{3\nu h^{2}}{32} + \frac\nu2\right)\|Q^{k+\frac{1}{2}}\|^{2} + \frac\nu2\|e^{k+\frac{1}{2}}\|^{2} + \frac{c_{3}}2\|e^{k+\frac12}\|^{2} \\ & &+ \frac{\nu h^{2}}{27}\|f^{k+\frac12}\|^{2} + \left( \frac{3{c_{3}^{2}}h^{2}}{8\nu} + \frac{3{c_{3}^{2}}}{2\nu }\right)\|e^{k+\frac12}\|^{2}+(P^{k+\frac{1}{2}},e^{k+\frac{1}{2}}), \quad 0 \leqslant k \leqslant N-1 \end{array} $$

or

$$ \begin{array}{@{}rcl@{}} && \frac{1}{2\tau}\left( \|e^{k+1}\|^{2}-\|e^{k}\|^{2}\right) \\ &\leqslant & \nu\|Q^{k+\frac{1}{2}}\|^{2} + \left( \frac{2{c_{3}^{2}}}{\nu } + \nu + \frac{c_{3}}2\right)\|e^{k+\frac12}\|^{2}+ \frac1{2\nu}\|P^{k+\frac{1}{2}}\|^{2} \\ &\leqslant & c_{13}\left( \|e^{k+1}\|^{2} + \|e^{k}\|^{2}\right) + c_{14}(\tau^{2}+h^{4})^{2}, \quad 0 \leqslant k \leqslant N-1. \end{array} $$

Then we have

$$(1-2c_{13}\tau)\|e^{k+1}\|^{2} \leqslant (1+2c_{13}\tau) \|e^{k}\|^{2} + 2 c_{14}\tau(\tau^{2}+h^{4})^{2}, \quad 0 \leqslant k \leqslant N-1.$$

When \(2c_{13}\tau \leqslant \frac {1}{3}\), we have

$$\|e^{k+1}\|^{2} \leqslant (1+6c_{13}\tau) \|e^{k}\|^{2} + 3c_{14}\tau(\tau^{2}+h^{4})^{2}, \quad 0 \leqslant k \leqslant N-1.$$

Using Gronwall inequality, equations (3.43) and (3.44), we can obtain

$$\|e^{k+1}\|^{2} \leqslant \exp\left\{6c_{13}k\tau\right\} \cdot \frac{c_{14}}{2c_{13}} \cdot (\tau^{2}+h^{4})^{2} \leqslant c_{15}^{2}(\tau^{2}+h^{4})^{2}, \quad 0 \leqslant k \leqslant N-1.$$

This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Q. & Sun, Zz. The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers’ equation. Adv Comput Math 47, 23 (2021). https://doi.org/10.1007/s10444-021-09848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09848-9

Keywords

Navigation