Skip to main content
Log in

Oxidized eucalyptus charcoal: a renewable biosorbent for removing heavy metals from aqueous solutions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, a comparison between charcoal produced from Eucalyptus urograndis modified and unmodified with HNO3 on the adsorption capacity of metals (Cu(II), Cd(II), and Ni(II)) in aqueous solutions was performed. The modification was performed using charcoal from the wood of a hybrid of Eucalyptus urophylla x Eucalyptus grandis (commonly referred to in Brazil as Eucalyptus urograndis). The charcoal was produced at a final temperature of 450 °C. Nitric acid was the oxidizing agent, employed at a concentration of 12.5% (v/v) and a reaction time of 3 h. The materials were characterized and compared using thermogravimetric analysis, thermogravimetric index, specific surface area analysis, scanning electron microscopy, elemental analysis, and point of zero charge. Studies of the process factors (contact time, mass, ideal pH), adsorption isotherms (Langmuir and Freundlich), and the thermodynamics of the process were also carried out. Treatment with nitric acid altered the elemental composition of charcoal, and functional groups, like carbonyl groups, were added to the surface, which caused a significant increase in total adsorption capacity (from 114.27 to 310.53 mg g−1 in a solution with a mix of metals). The model that best fit the data was Langmuir, and the maximum removal of Cu(II) ions was 96%, and occurred at pH 5, at 318 K, with a dose of biosorbent equal to 0.4 g 50 mL−1 of solution and equilibrium contact time of 30 min. Thermodynamic parameters suggested that adsorption occurred spontaneously and occurred through the ion exchange and electrostatic interaction mechanisms. In systems with the presence of more than one metal ion, the total adsorption capacity increased.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC (2019) New Prospects for Modified Algae in Heavy Metal Adsorption. Trends Biotechnol 37:1255–1268

    Article  Google Scholar 

  2. Xu H, Shen B, Yuan P, Lu F, Tian L, Zhang X (2016) The adsorption mechanism of elemental mercury by HNO3-modified bamboo char. Fuel Process Technol 154:139–146. https://doi.org/10.1016/j.fuproc.2016.08.025

    Article  Google Scholar 

  3. González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sust Energ Rev 82:1393–1414

    Article  Google Scholar 

  4. Nejadshafiee V, Islami MR (2019) Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater Sci Eng C 101:42–52. https://doi.org/10.1016/j.msec.2019.03.081

    Article  Google Scholar 

  5. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  Google Scholar 

  6. Chen X (2015) Modeling of experimental adsorption isotherm data. Information 6:14–22. https://doi.org/10.3390/info6010014

    Article  Google Scholar 

  7. Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW, Park YK, Liu Z, Wong CS, Peng W (2020) Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J Hazard Mater 390:121649. https://doi.org/10.1016/j.jhazmat.2019.121649

    Article  Google Scholar 

  8. Souza EC, Pimenta AS, Silva AJF, Braga RM, Azevedo TKB, Medeiros Neto PN (2020) Efficiency of H2O2-treated eucalyptus biochar on the removal of Cu(II), Cd(II) and Ni(II) from aqueous solution. Rev Bras Ciênc Agrár 15:1–13. https://doi.org/10.5039/agraria.v15i3a6530

  9. Lam SS, Su MH, Nam WL, Thoo DS, Ng CM, Liew RK, Yuh Yek PN, Ma NL, Nguyen Vo DV (2019) Microwave pyrolysis with steam activation in producing activated carbon for removal of herbicides in agricultural surface water. Ind Eng Chem Res 58:695–703. https://doi.org/10.1021/acs.iecr.8b03319

    Article  Google Scholar 

  10. Kong S, Lam SS, Yek PNY et al (2019) Self-purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption. J Chem Technol Biotechnol 94:1397–1405. https://doi.org/10.1002/jctb.5884

    Article  Google Scholar 

  11. Ding Z, Hu X, Wan Y, Wang S, Gao B (2016) Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J Ind Eng Chem 33:239–245. https://doi.org/10.1016/j.jiec.2015.10.007

    Article  Google Scholar 

  12. El Nemr A, El-Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117. https://doi.org/10.1016/j.arabjc.2011.01.016

    Article  Google Scholar 

  13. Ghaedi M, Mazaheri H, Khodadoust S, Hajati S, Purkait MK (2015) Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochim Acta A Mol Biomol Spectrosc 135:479–490. https://doi.org/10.1016/j.saa.2014.06.138

    Article  Google Scholar 

  14. Hajati S, Ghaedi M, Yaghoubi S (2015) Local, cheep and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: Optimization by surface response methodology. J Ind Eng Chem 21:760–767. https://doi.org/10.1016/j.jiec.2014.04.009

    Article  Google Scholar 

  15. Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - a critical review. Bioresour Technol 160:191–202. https://doi.org/10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  16. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  Google Scholar 

  17. Hass A, Lima IM (2018) Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane biochar. Environ Technol Innov 10:16–26. https://doi.org/10.1016/j.eti.2018.01.007

    Article  Google Scholar 

  18. Shen Z, Hou D, Jin F, Shi J, Fan X, Tsang DCW, Alessi DS (2019) Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci Total Environ 655:751–758. https://doi.org/10.1016/j.scitotenv.2018.11.282

    Article  Google Scholar 

  19. Nayak SS, Mirgane NA, Shivankar VS, Pathade KB, Wadhawa GC (2020) Adsorption of methylene blue dye over activated charcoal from the fruit peel of plant hydnocarpus pentandra. Materials Today: Proceedings 37:2302–2305. https://doi.org/10.1016/j.matpr.2020.07.728

  20. Gupta N, Poddar K, Sarkar D, Kumari N, Padhan B, Sarkar A (2019) Fruit waste management by pigment production and utilization of residual as bioadsorbent. J Environ Manag 244:138–143. https://doi.org/10.1016/j.jenvman.2019.05.055

    Article  Google Scholar 

  21. Liu S, Qin F, Yu S (2018) Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals. Appl Soil Ecol 127:1–7. https://doi.org/10.1016/j.apsoil.2018.02.028

    Article  Google Scholar 

  22. Ghasemian A, Eslami M, Hasanvand F, Bozorgi H, al-abodi HR (2019) Eucalyptus camaldulensis properties for use in the eradication of infections. Comp Immunol Microbiol Infect Dis 65:234–237. https://doi.org/10.1016/j.cimid.2019.04.007

    Article  Google Scholar 

  23. da Silva CMS, Vital BR, Rodrigues F d Á et al (2019) Hydrothermal and organic-chemical treatments of eucalyptus biomass for industrial purposes. Bioresour Technol 289:121731. https://doi.org/10.1016/j.biortech.2019.121731

    Article  Google Scholar 

  24. Rodrigues T, Braghini Junior A (2019) Technological prospecting in the production of charcoal: A patent study. Renew Sust Energ Rev 111:170–183

    Article  Google Scholar 

  25. IBÁ IB de Á (2020) Relatório Anual IBÁ 2019

  26. Rosas JM, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T (2012) Kinetic study of the oxidation resistance of phosphorus-containing activated carbons. Carbon 50:1523–1537. https://doi.org/10.1016/j.carbon.2011.11.030

    Article  Google Scholar 

  27. Hadjittofi L, Prodromou M, Pashalidis I (2014) Activated biochar derived from cactus fibres - Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresour Technol 159:460–464. https://doi.org/10.1016/j.biortech.2014.03.073

    Article  Google Scholar 

  28. Santos A, Simões R, Tavares M (2013) Variation of some wood macroscopic properties along the stem of Acacia melanoxylon R. Br. adult trees in Portugal. For Syst 22(3):463

  29. Oliveira LP (2017) Síntese e caracterização de carvão vegetal ativado por meio de oxidação com HNO3 e H2o2. Universidade Federal do Rio Grande do Norte

  30. De Melo Benites V, De Sá Mendonça E, Schaefer CEGR et al (2005) Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma 127:104–113. https://doi.org/10.1016/j.geoderma.2004.11.020

    Article  Google Scholar 

  31. Trompowsky PM, De Melo Benites V, Madari BE et al (2005) Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org Geochem 36:1480–1489. https://doi.org/10.1016/j.orggeochem.2005.08.001

    Article  Google Scholar 

  32. Ferreira Da Silva AJ, Paiva De Alencar Moura MC, Da Silva Santos E et al (2018) Copper removal using carnauba straw powder: equilibrium, kinetics, and thermodynamic studies. J Environ Chem Eng 6:6828–6835. https://doi.org/10.1016/j.jece.2018.10.028

    Article  Google Scholar 

  33. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  34. Freundlich H (1922) Colloid & capillary chemistry, Translated by H. S. Hatfield. E. P. Dutton and Company, Inc.: New York, p. 740- 742.

  35. Karimi J, Sayadi A (2019) Arsenic removal from mining effluents using plant-mediated, green-synthesized iron nanoparticles. Processes 7:759. https://doi.org/10.3390/pr7100759

    Article  Google Scholar 

  36. Kučerík J, Kovář J, Pekař M (2004) Thermoanalytical investigation of lignite humic acids fractions. In: J Therm Anal Calorim. Springer, pp 55–65

  37. Cazetta AL, Vargas AMM, Nogami EM, Kunita MH, Guilherme MR, Martins AC, Silva TL, Moraes JCG, Almeida VC (2011) NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J 174:117–125. https://doi.org/10.1016/j.cej.2011.08.058

    Article  Google Scholar 

  38. Turčániová L, Škvarla J, Baláǎ P (2000) A contribution to the mechanism of formation of humic acids in coal. J Mater Synth Process 8:359–363. https://doi.org/10.1023/A:1011358831253

    Article  Google Scholar 

  39. Selvalakshmi S, de la Rosa JM, Zhijun H, Guo F, Ma X (2018) Effects of ageing and successive slash-and-burn practice on the chemical composition of charcoal and yields of stable carbon. Catena 162:141–147. https://doi.org/10.1016/j.catena.2017.11.028

    Article  Google Scholar 

  40. Espinosa E, Sánchez R, González Z, Domínguez-Robles J, Ferrari B, Rodríguez A (2017) Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: physicochemical, thermal and rheological characterisation. Carbohydr Polym 175:27–37. https://doi.org/10.1016/j.carbpol.2017.07.055

    Article  Google Scholar 

  41. Biniak S, Szymański G, Siedlewski J, Świątkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810. https://doi.org/10.1016/S0008-6223(97)00096-1

    Article  Google Scholar 

  42. Song KH, Jeong SK, Park KT, Lee KY, Kim HJ (2020) Supercritical catalytic cracking of n-dodecane over air-oxidized activated charcoal. Fuel 276:118010. https://doi.org/10.1016/j.fuel.2020.118010

    Article  Google Scholar 

  43. Braga RM, Queiroga TS, Calixto GQ, Almeida HN, Melo DMA, Melo MAF, Freitas JCO, Curbelo FDS (2015) The energetic characterization of pineapple crown leaves. Environ Sci Pollut Res 22:18987–18993. https://doi.org/10.1007/s11356-015-5082-6

    Article  Google Scholar 

  44. Supaluknari S, Larkins FP, Redlich P, Jackson WR (1988) An FTIR study of australian coals: characterization of oxygen functional groups. Fuel Process Technol 19:123–140. https://doi.org/10.1016/0378-3820(88)90061-6

    Article  Google Scholar 

  45. Brazil TR, Junior MSO, Baldan MR, Massi M, Rezende MC (2018) Effect of different superficial treatments on structural, morphological and superficial area of Kraft lignin based charcoal. Vib Spectrosc 99:130–136. https://doi.org/10.1016/j.vibspec.2018.08.021

    Article  Google Scholar 

  46. Muñiz G, Fierro V, Celzard A, Furdin G, Gonzalez-Sánchez G, Ballinas ML (2009) Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II). J Hazard Mater 165:893–902. https://doi.org/10.1016/j.jhazmat.2008.10.074

    Article  Google Scholar 

  47. Wang Z, Nie E, Li J, Yang M, Zhao Y, Luo X, Zheng Z (2012) Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon. Environ Sci Pollut Res 19:2908–2917. https://doi.org/10.1007/s11356-012-0799-y

    Article  Google Scholar 

  48. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  49. Sánchez R, Espinosa E, Domínguez-Robles J, Loaiza JM, Rodríguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033. https://doi.org/10.1016/j.ijbiomac.2016.08.019

    Article  Google Scholar 

  50. Eeshwarasinghe D, Loganathan P, Vigneswaran S (2019) Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 223:616–627. https://doi.org/10.1016/j.chemosphere.2019.02.033

    Article  Google Scholar 

  51. Spessato L, Bedin KC, Cazetta AL, Souza IPAF, Duarte VA, Crespo LHS, Silva MC, Pontes RM, Almeida VC (2019) KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J Hazard Mater 371:499–505. https://doi.org/10.1016/j.jhazmat.2019.02.102

    Article  Google Scholar 

  52. Güzel F, Sayğılı H, Akkaya Sayğılı G, Koyuncu F, Yılmaz C (2017) Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. J Clean Prod 144:260–265. https://doi.org/10.1016/j.jclepro.2017.01.029

    Article  Google Scholar 

  53. Yao S, Zhang J, Shen D, Xiao R, Gu S, Zhao M, Liang J (2016) Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating. J Colloid Interface Sci 463:118–127. https://doi.org/10.1016/j.jcis.2015.10.047

    Article  Google Scholar 

  54. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Han L, du Z, Sun K, Wang X (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour Technol 256:247–253. https://doi.org/10.1016/j.biortech.2018.02.022

    Article  Google Scholar 

  55. Malakootian M, Nouri J, Hossaini H (2009) Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int J Environ Sci Technol 6:183–190

    Article  Google Scholar 

  56. Hoseinian FS, Rezai B, Kowsari E, Safari M (2018) Kinetic study of Ni(II) removal using ion flotation: effect of chemical interactions. Miner Eng 119:212–221. https://doi.org/10.1016/j.mineng.2018.01.028

    Article  Google Scholar 

  57. Huy DH, Seelen E, Liem-Nguyen V (2020) Removal mechanisms of cadmium and lead ions in contaminated water by stainless steel slag obtained from scrap metal recycling. J Water Process Eng 36:101369. https://doi.org/10.1016/j.jwpe.2020.101369

    Article  Google Scholar 

  58. Pinheiro Nascimento PF, Barros Neto EL, Fernandes Bezerra DV, Ferreira da Silva AJ (2020) Anionic surfactant impregnation in solid waste for Cu 2+ adsorption: study of kinetics, equilibrium isotherms, and thermodynamic parameters. J Surfactant Deterg:jsde.12388. https://doi.org/10.1002/jsde.12388

  59. Erhayem M, Al-Tohami F, Mohamed R, Ahmida K (2015) Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from <i>Rosmarinus officinalis</i> Leaves. Am J Anal Chem 06:1–10. https://doi.org/10.4236/ajac.2015.61001

    Article  Google Scholar 

  60. Nascimento RF do, Lima ACA de, Vidal CB, et al (2014) Adsorção: aspectos teóricos e aplicações ambientais. Imprensa Universitária

  61. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  Google Scholar 

  62. Liu C-C, Wang M-K, Chiou C-S, Li YS, Yang CY, Lin YA (2009) Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study. J Hazard Mater 171:386–392. https://doi.org/10.1016/j.jhazmat.2009.06.012

    Article  Google Scholar 

  63. Inglezakis VJ, Zorpas AA (2012) Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin Water Treat 39:149–157. https://doi.org/10.1080/19443994.2012.669169

    Article  Google Scholar 

  64. Kumar R, Barakat MA (2013) Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chem Eng J 226:377–383. https://doi.org/10.1016/j.cej.2013.04.063

    Article  Google Scholar 

  65. Eletta OAA, Tijani IO, Ighalo JO (2020) Adsorption of Pb(II) and phenol from wastewater using silver nitrate modified activated carbon from groundnut (Arachis hypogaea L.) Shells. West Indian J Eng 43:26–35

    Google Scholar 

  66. Ighalo JO, Adeniyi AG, Adelodun AA (2021) Recent advances on the adsorption of herbicides and pesticides from polluted waters: performance evaluation via physical attributes. J Ind Eng Chem 93:117–137. https://doi.org/10.1016/j.jiec.2020.10.011

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Graduate Program in Forest Science (PPGCFL) of Rio Grande do Norte Federal University (UFRN) and the Nucleus for Primary Processing and Reuse of Produced Water and Waste (NUPPRAR). We are especially grateful to IBIRÉ Negócios Sustentáveis Ltda. for financial support and supplying analytical material and chemical reagents.

Funding

This study was financed in part by the Office to Coordinate Improvement of University Personnel (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Santos Pimenta.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, E.C., Pimenta, A.S., da Silva, A.J.F. et al. Oxidized eucalyptus charcoal: a renewable biosorbent for removing heavy metals from aqueous solutions. Biomass Conv. Bioref. 13, 4105–4119 (2023). https://doi.org/10.1007/s13399-021-01431-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01431-y

Keywords

Navigation