Skip to main content
Log in

Positive-definite modification of a covariance matrix by minimizing the matrix \(\ell_{\infty}\) norm with applications to portfolio optimization

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

The covariance matrix, which should be estimated from the data, plays an important role in many multivariate procedures, and its positive definiteness (PDness) is essential for the validity of the procedures. Recently, many regularized estimators have been proposed and shown to be consistent in estimating the true matrix and its support under various structural assumptions on the true covariance matrix. However, they are often not PD. In this paper, we propose a simple modification to make a regularized covariance matrix be PD while preserving its support and the convergence rate. We focus on the matrix \(\ell_{\infty }\) norm error in covariance matrix estimation because it could allow us to bound the error in the downstream multivariate procedure relying on it. Our proposal in this paper is an extension of the fixed support positive-definite (FSPD) modification by Choi et al. (2019) from spectral and Frobenius norms to the matrix \(\ell_{\infty }\) norm. Like the original FSPD, we consider a convex combination between the initial estimator (the regularized covariance matrix without PDness) and a given form of the diagonal matrix minimize the \(\ell_{\infty }\) distance between the initial estimator and the convex combination, and find a closed-form expression for the modification. We apply the procedure to the minimum variance portfolio (MVP) optimization problem and show that the vector \(\ell_{\infty }\) error in the estimation of the optimal portfolio weight is bounded by the matrix \(\ell _{\infty }\) error of the plug-in covariance matrix estimator. We illustrate the MVP results with S&P 500 daily returns data from January 1978 to December 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bickel, P., Levina, E.: Covariance regularization by thresholding. Ann. Stat. 36(6), 2577–2604 (2008a)

    MathSciNet  MATH  Google Scholar 

  • Bickel, P., Levina, E.: Regularized estimation of large covariance matrices. Ann. Stat. 36(1), 199–227 (2008b)

    Article  MathSciNet  Google Scholar 

  • Cai, T.T., Liu, W.: Adaptive thresholding for sparse covariance matrix estimation. J. Am. Stat. Assoc. 106(494), 672–684 (2011)

    Article  MathSciNet  Google Scholar 

  • Cai, T.T., Zhang, C.-H., Zhou, H.H.: Optimal rates of convergence for covariance matrix estimation. Ann. Stat. 38(4), 2118–2144 (2010)

    Article  MathSciNet  Google Scholar 

  • Cai, T.T., Zhou, H.H.: Minimax estimation of large covariance matrices under \(\ell _1\)-norm. Stat. Sin. 22(4), 1319–1349 (2012a)

    MATH  Google Scholar 

  • Cai, T.T., Zhou, H.H.: Optimal rates of convergence for sparse covariance matrix estimation. Ann. Stat. 40(5), 2389–2420 (2012b)

    Article  MathSciNet  Google Scholar 

  • Chan, L.K.C., Karceski, J., Lakonishok, J.: On portfolio optimization: forecasting covariances and choosing the risk model. Rev. Financ. Stud. 12(5), 937–974 (2015)

    Article  Google Scholar 

  • Choi, Y.-G., Lim, J., Choi, S.: High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators. J. Stat. Comput. Simul. 89(7), 1278–1300 (2019a)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-G., Lim, J., Roy, A., Park, J.: Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage. J. Multivar. Anal. 171, 234–249 (2019b)

    Article  MathSciNet  Google Scholar 

  • Dai, Z., Dong, X., Kang, J., Hong, L.: Forecasting stock market returns: new technical indicators and two-step economic constraint method. N. Am. J. Econ. Finance 53, 101216 (2020)

    Article  Google Scholar 

  • Dai, Z., Wen, F.: Some improved sparse and stable portfolio optimization problems. Finance Res. Lett. 27, 46–52 (2018)

    Article  Google Scholar 

  • DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manag.Sci. 55(5), 798–812 (2009)

    Article  Google Scholar 

  • Fan, J., Liao, Y., Mincheva, M.: Large covariance estimation by thresholding principal orthogonal complements. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 75(4), 603–680 (2013)

    Article  MathSciNet  Google Scholar 

  • Glasserman, P., Kang, W.: OR forum-design of risk weights. Oper. Res. 62(6), 1204–1220 (2014)

    Article  MathSciNet  Google Scholar 

  • Khare, K., Oh, S.-Y., Rajaratnam, B.: A convex pseudo-likelihood framework for high dimensional partial correlation estimation with convergence guarantees. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 77(4), 803–825 (2015)

    Article  MathSciNet  Google Scholar 

  • Ledoit, O., Wolf, M.: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Finance 10(5), 603–621 (2003)

    Article  Google Scholar 

  • Ledoit, O., Wolf, M.: Honey, I shrunk the sample covariance matrix. J. Portfolio Manag. 30(4), 110–119 (2004)

    Article  Google Scholar 

  • Ledoit, O., Wolf, M.: Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks. Rev. Financ. Stud. 30(12), 4349–4388 (2017a)

    Article  Google Scholar 

  • Ledoit, O., Wolf, M.: Numerical implementation of the QuEST function. Comput. Stat. Data Anal. 115, 199–223 (2017b)

    Article  MathSciNet  Google Scholar 

  • Liu, H., Wang, L., Zhao, T.: Sparse covariance matrix estimation with Eigenvalue constraints. J. Comput. Gr. Stat. 23(2), 439–459 (2014)

    Article  MathSciNet  Google Scholar 

  • Rothman, A.J.: Positive definite estimators of large covariance matrices. Biometrika 99(3), 733–740 (2012)

    Article  MathSciNet  Google Scholar 

  • Won, J.-H., Lim, J., Kim, S.-J., Rajaratnam, B.: Condition-number-regularized covariance estimation. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 75(3), 427–450 (2013)

    Article  MathSciNet  Google Scholar 

  • Xue, L., Ma, S., Zou, H.: Positive-definite \(\ell _{1}\)-penalized estimation of large covariance matrices. J. Am. Stat. Assoc. 107(500), 1480–1491 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the associate editor and two reviewers for many valuable comments. S. Katayama’s research is supported by JSPS KAKENHI Grant No. 18K18009, and J. Lim and Y-G. Choi’s research is supported by the National Research Foundation of Korea (NRF-2017R1A2B2012264 and NRF-2020R1G1A1A01006229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Katayama, S., Lim, J. et al. Positive-definite modification of a covariance matrix by minimizing the matrix \(\ell_{\infty}\) norm with applications to portfolio optimization. AStA Adv Stat Anal 105, 601–627 (2021). https://doi.org/10.1007/s10182-021-00396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-021-00396-7

Keywords

Navigation