Skip to main content
Log in

ParticLS: Object-oriented software for discrete element methods and peridynamics

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

ParticLS (Particle Level Sets) is a software library that implements the discrete element method (DEM) and meshfree methods. ParticLS tracks the interaction between individual particles whose geometries are defined by level sets capable of capturing complex shapes. These particles either represent rigid bodies or material points within a continuum. Particle-particle interactions using various contact laws numerically approximate solutions to energy and mass conservation equations, simulating rigid body dynamics or deformation/fracture. By leveraging multiple contact laws, ParticLS can simulate interacting bodies that deform, fracture, and are composed of many particles. In the continuum setting, we numerically solve the peridynamic equations—integro-differential equations capable of modeling objects with discontinuous displacement fields and complex fracture dynamics. We show that the discretized peridynamic equations can be solved using the same software infrastructure that implements the DEM. Therefore, we design a unique software library where users can easily add particles with arbitrary geometries and new contact laws that model either rigid-body interaction or peridynamic constitutive relationships. We demonstrate ParticLS’ versatility on test problems meant to showcase features applicable to a broad selection of fields such as tectonics, granular media, multiscale simulations, glacier calving, and sea ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Although we have assumed that particles are convex, this method is compatible for non-convex particles with minimal alterations. In the non-convex case, multiple contact points are possible and each potential contact point corresponds to a local minimum of Eq. (14). We can identify these local solutions by repeatedly solving the optimization problem with different initial guesses. The details of the non-convex case are beyond the scope of this paper and we, therefore, leave further discussion to future work.

  2. Note that the SDFs will always have the same sign.

References

  1. Andrade JE, Lim KW, Avila CF, Vlahinić I (2012) Granular element method for computational particle mechanics. Comput Methods Appl Mech Eng 241:262–274

    Article  Google Scholar 

  2. André D, Iordanoff I, Charles Jl, Néauport J (2012) Discrete element method to simulate continuous material by using the cohesive beam model. Comput Methods Appl Mech Eng 213:113–125

    Article  Google Scholar 

  3. Asaf Z, Rubinstein D, Shmulevich I (2007) Determination of discrete element model parameters required for soil tillage. Soil Tillage Res 92(1–2):227–242

    Article  Google Scholar 

  4. Askari E, Bobaru F, Lehoucq RB, Parks ML, Silling SA, Weckner O (2008) Peridynamics for multiscale materials modeling. J Phys Conf Ser 125:012078. https://doi.org/10.1088/1742-6596/125/1/012078

    Article  Google Scholar 

  5. Benning M, Knoll F, Schönlieb CB, Valkonen T. (2015) : Preconditioned admm with nonlinear operator constraint. In: IFIP Conference on System Modeling and Optimization, pp. 117–126. Springer

  6. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517

    Article  Google Scholar 

  7. Bessa M, Foster J, Belytschko T, Liu WK (2014) A meshfree unification: reproducing kernel peridynamics. Comput Mech 53(6):1251–1264

    Article  MathSciNet  Google Scholar 

  8. Blanco JL, Rai PK. (2014) : nanoflann: a C++ header-only fork of FLANN, a library for nearest neighbor (NN) with kd-trees. https://github.com/jlblancoc/nanoflann

  9. Bobillier\(^1\) G, Gaume J, Van Herwijnen A, Schweizer J. (2018) : Modeling crack propagation for snow slab avalanche release with discrete elements. In: Proceedings of the European conference on computational mechanics

  10. Cho GC, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602

    Article  Google Scholar 

  11. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  12. Favier J, Abbaspour-Fard M, Kremmer M, Raji A (1999) Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles. Eng Comput 16(4):467–480

    Article  Google Scholar 

  13. Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10):1242–1258

    Article  Google Scholar 

  14. Garcia X, Latham JP, Xiang Js, Harrison J (2009) A clustered overlapping sphere algorithm to represent real particles in discrete element modelling. Geotechnique 59(9):779–784

    Article  Google Scholar 

  15. Gaume J, van Herwijnen A, Schweizer J, Chambon G, Birkeland K. (2014): Discrete element modeling of crack propagation in weak snowpack layers. In: Proceedings ISSW

  16. Goldstein T, O’Donoghue B, Setzer S, Baraniuk R (2014) Fast alternating direction optimization methods. SIAM J Imaging Sci 7(3):1588–1623

    Article  MathSciNet  Google Scholar 

  17. Guo N, Zhao J (2014) A coupled fem/dem approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99(11):789–818

    Article  MathSciNet  Google Scholar 

  18. Guo N, Zhao J (2015) A multiscale investigation of strain localization in cohesionless sand. In: Chau KT, Zhao J (eds) Bifurcation and degradation of geomaterials in the new Millennium. Springer, Cham, pp 121–126

    Chapter  Google Scholar 

  19. Guo N, Zhao J (2016) Multiscale insights into classical geomechanics problems. Int J Numer Anal Methods Geomech 40(3):367–390. https://doi.org/10.1002/nag.2406

    Article  Google Scholar 

  20. Guo Y, Curtis JS (2015) Discrete element method simulations for complex granular flows. Ann Rev Fluid Mech 47:21–46

    Article  MathSciNet  Google Scholar 

  21. Guo Y, Morgan JK (2004) Influence of normal stress and grain shape on granular friction: Results of discrete element simulations. J Geophys Res Solid Earth. https://doi.org/10.1029/2004JB003044

  22. Hagenmuller P, Chambon G, Naaim M (2015) Microstructure-based modeling of snow mechanics: a discrete element approach. Cryosphere 9(5):1969–1982. https://doi.org/10.5194/tc-9-1969-2015

    Article  Google Scholar 

  23. Hopkins M, Hibler W (1991) On the ridging of a thin sheet of lead ice. Ann Glaciol 15:81–86

    Article  Google Scholar 

  24. Hopkins MA (2004) A discrete element lagrangian sea ice model. Eng Comput 21(2/3/4):409–421

  25. Johnson S, Williams JR, Cook B (2004) Contact resolution algorithm for an ellipsoid approximation for discrete element modeling. Eng Comput 21(2/3/4):215–234

  26. Kawamoto R, Andò E, Viggiani G, Andrade JE (2016) Level set discrete element method for three-dimensional computations with triaxial case study. J Mech Phys Solids 91:1–13

  27. Kawamoto R, Andò E, Viggiani G, Andrade JE (2018) All you need is shape: predicting shear banding in sand with ls-dem. J Mech Phys Solids 111:375–392

    Article  Google Scholar 

  28. Latham J, Lu Y, Munjiza A (2001) A random method for simulating loose packs of angular particles using tetrahedra. Geotechnique 51(10):871–879

    Article  Google Scholar 

  29. Latham J, Munjiza A (2004) The modelling of particle systems with real shapes. Philosophical Transactions of the Royal Society of London. Series A: Mathematical. Physical and Engineering Sciences 362(1822):1953–1972

  30. Li L, Marteau E, Andrade JE (2019) Capturing the inter-particle force distribution in granular material using ls-dem. Granul Matter 21(3):43

    Article  Google Scholar 

  31. Lim KW, Andrade JE (2014) Granular element method for three-dimensional discrete element calculations. Int J Numer Anal Methods Geomech 38(2):167–188

    Article  Google Scholar 

  32. Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219

    Article  MathSciNet  Google Scholar 

  33. McDowell G, Harireche O, Konietzky H, Brown S, Thom N (2006) Discrete element modelling of geogrid-reinforced aggregates. Proc Instit Civil Eng Geotech Eng 159(1):35–48

    Article  Google Scholar 

  34. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  35. Parikh, N., Boyd, S. (2014) : Proximal algorithms. Foundations and Trends\(\text{\textregistered }\) in Optimization 1(3), 127–239

  36. Rogula D. (1982) : Introduction to nonlocal theory of material media. In: Nonlocal theory of material media, pp. 123–222. Springer

  37. Shäfer J, Dippel S, Wolf D (1996) Force schemes in simulations of granular materials. J de physique I 6(1):5–20

    Google Scholar 

  38. Shmulevich I, Asaf Z, Rubinstein D (2007) Interaction between soil and a wide cutting blade using the discrete element method. Soil Tillage Res 97(1):37–50

    Article  Google Scholar 

  39. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  Google Scholar 

  40. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elasticity 88(2):151–184

    Article  MathSciNet  Google Scholar 

  41. Silling SA, Lehoucq R. (2010) : Peridynamic theory of solid mechanics. In: Advances in applied mechanics, vol. 44, pp. 73–168. Elsevier

  42. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elasticity 93(1):13

    Article  MathSciNet  Google Scholar 

  43. Song Y, Turton R, Kayihan F (2006) Contact detection algorithms for dem simulations of tablet-shaped particles. Powder Technol 161(1):32–40

    Article  Google Scholar 

  44. Timco G, Burden R (1997) An analysis of the shapes of sea ice ridges. Cold Regions Sci Technol 25(1):65–77. https://doi.org/10.1016/S0165-232X(96)00017-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding provided by the Engineering Research and Development Center (ERDC) Future Innovation Funds (FIF) program. Since writing this paper, author Andrew D. Davis has moved from the Cold Regions Research and Engineering Labs to the Courant Institute at New York University, where he is funded by the Multidisciplinary University Research Initiative—ONR N00014-19-1-2421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Davis.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, A.D., West, B.A., Frisch, N.J. et al. ParticLS: Object-oriented software for discrete element methods and peridynamics. Comp. Part. Mech. 9, 1–13 (2022). https://doi.org/10.1007/s40571-021-00392-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00392-3

Keywords

Navigation