Skip to main content
Log in

A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A computational method is developed for solving time consistent distributionally robust multistage stochastic linear programs with discrete distribution. The stochastic structure of the uncertain parameters is described by a scenario tree. At each node of this tree, an ambiguity set is defined by conditional moment constraints to guarantee time consistency. This method employs the idea of nested Benders decomposition that incorporates forward and backward steps. The backward steps solve some conic programming problems to approximate the cost-to-go function at each node, while the forward steps are used to generate additional trial points. A new framework of convergence analysis is developed to establish the global convergence of the approximation procedure, which does not depend on the assumption of polyhedral structure of the original problem. Numerical results of a practical inventory model are reported to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pflug, G.C., Pichler, A.: Multistage Stochastic Optimization. Springer International Publishing, Switzerland (2016)

    MATH  Google Scholar 

  2. Casey, M.S., Sen, S.: The scenario generation algorithm for multistage stochastic linear programming. Math. Oper. Res. 30(3), 615–631 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hyland, K., Kaut, M., Wallace, S.W.: A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24(2–3), 169–185 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Pac. J. Optim. 3(2), 257–271 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Rockafellar, R.T., Sun, J.: Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging. Math. Program. 174(1), 453–471 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, H., Liu, Y., Sun, H.: Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods. Math. Program. 169(2), 1–41 (2017)

    MathSciNet  Google Scholar 

  9. Shang, C., You, F.: Distributionally robust optimization for planning and scheduling under uncertainty. Comput. Chem. Eng. 110, 53–68 (2018)

    Article  Google Scholar 

  10. Gao, S.Y., Kong, L., Sun, J.: Robust two-stage stochastic linear programs with moment constraints. Optimization 63(6), 829–837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ang, J., Meng, F., Sun, J.: Two-stage stochastic linear programs with incomplete information on uncertainty. Eur. J. Oper. Res. 233, 16–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ang, M., Sun, J., Yao, Q.: On the dual representation of coherent risk measures. Ann. Oper. Res. 262, 29–46 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ling, A., Sun, J., Yang, X.: Robust tracking error portfolio selection with worst-case downside risk measures. J. Econ. Dyn. Control. 39, 178–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ling, A., Sun, J., Xiu, N., Yang, X.G.: Robust two-stage stochastic linear optimization with risk aversion. Eur. J. Oper. Res. 256(1), 215–229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun, J., Liao, L.Z., Rodrigues, B.: Quadratic two-stage stochastic optimization with coherent measures of risk. Math. Program. 168, 599–613 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, R., Guan, Y.: Risk-averse two-stage stochastic program with distributional ambiguity. Oper. Res. 66(5), 1390–1405 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hanasusanto, G.A., Kuhn, D.: Conic programming reformulations of two-stage distributionally robust linear programs over wasserstein balls. Oper. Res. 66(3), 849–869 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bansal, M., Huang, K.L., Mehrotra, S.: Decomposition algorithms for two-stage distributionally robust mixed binary programs. SIAM J. Optim. 28(3), 2360–2383 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bansal, M., Mehrotra, S.: On solving two-stage distributionally robust disjunctive programs with a general ambiguity set. Eur. J. Oper. Res. 279(2), 296–307 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Analui, B., Pflug, G.C.: On distributionally robust multiperiod stochastic optimization. Comput. Manag. Sci. 11(3), 197–220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pflug, G.C., Pichler, A.: A distance for multistage stochastic optimization models. SIAM J. Optim. 22(1), 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Artzner, P., Delbaen, F., Eber, J.M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ruszczyński, A.: Risk-averse dynamic programming for Markov decision processes. Math. Program. 125(2), 235–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bielecki, T.R., Cialenco, I., Pitera, M.: A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probab. Uncertain. Quant. Risk. 2(1), 3–54 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shapiro, A.: On a time consistency concept in risk averse multistage stochastic programming. Oper. Res. Lett. 37(3), 143–147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Homem-de-Mello, T., Pagnoncelli, B.K.: Risk aversion in multi -stage stochastic programming: a modeling and algorithmic perspective. Eur. J. Oper. Res. 249(1), 188–199 (2016)

    Article  MATH  Google Scholar 

  27. Ruszczyński, A.: Decomposition methods. In: Shapiro, A., Ruszczyński, A. (eds.) Stochastic Programming, vol. 10 of Handbooks in Operations Research and Management Science, pp. 141–211. Elsevier, Amsterdam (2003)

    Google Scholar 

  28. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The Benders decomposition algorithm: a literature review. Eur. J. Oper. Res. 259(3), 801–817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolf, C.: Advanced acceleration techniques for nested Benders decomposition in stochastic programming. Doctoral dissertation, University of Paderborn (2014)

  30. Pereira, M.V., Pinto, L.M.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52, 359–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guigues, V.: Dual dynamic programing with cut selection: convergence proof and numerical experiments. Eur. J. Oper. Res. 258(1), 47–57 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guigues, V.: Inexact cuts in stochastic dual dynamic programming. SIAM J. Optim. 30, 407–438 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rebennack, S.: Combining sampling-based and scenario-based nested Benders decomposition methods: application to stochastic dual dynamic programming. Math. Program. 156(1–2), 343–389 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Girardeau, P., Leclere, V., Philpott, A.B.: On the convergence of decomposition methods for multistage stochastic convex programs. Math. Oper. Res. 40(1), 130–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Baucke, R.: An algorithm for solving infinite horizon Markov dynamic programs. Optimization (2018). http://www.optimization-online.org/DB_HTML/2018/04/6565.html

  36. Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic programming problems. Optimization-Online (2017). http://www.optimization-online.org/DB_FILE/2017/07/6138.html

  37. Georghiou, A., Tsoukalas, A., Wiesemann, W.: Robust dual dynamic programming. Oper. Res. 67(3), 813–830 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shapiro, A.: Distributionally robust stochastic programming. SIAM J. Optim. 27(4), 2258–2275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

    Book  MATH  Google Scholar 

  40. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  41. Shapiro, A.: On duality theory of conic linear problems. In: Semi-Infinite Programming, pp. 135–165. Springer, Boston (2001)

  42. Shapiro, A.: Topics in Stochastic Programming. CORE Lecture Series. Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve (2011)

    Google Scholar 

  43. Philpott, A., de Matos, V., Finardi, E.: On solving multistage stochastic programs with coherent risk measures. Oper. Res. 61(4), 957–970 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. de Matos, V., Philpott, A.B., Finardi, E.C.: Improving the performance of stochastic dual dynamic programming. J. Comput. Appl. Math. 290(25), 196–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shapiro, A., Tekaya, W., Soares, M.P., da Costa, J.P.: Worst-case-expectation approach to optimization under uncertainty. Oper. Res. 61(6), 1435–1449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2013)

    MATH  Google Scholar 

  47. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  48. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  49. Bertsekas, D.P., Nedi, A., Ozdaglar, A.: Convex Analysis and Optimization. Athena Scientific (2003)

  50. Bisschop, J.: AIMMS-Optimization Modeling. AIMMS B.V. (2020)

  51. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62, 1358–1376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Asamov, T., Powell, W.B.: Regularized decomposition of high-dimensional multistage stochastic programs with Markov uncertainty. SIAM J. Optim. 28(1), 575–595 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Grants 11401384, B16002 and 11271243 of National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Sun, J. & Wang, Y. A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure. Comput Optim Appl 79, 67–99 (2021). https://doi.org/10.1007/s10589-021-00266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00266-7

Keywords

Mathematics Subject Classification

Navigation