Skip to main content
Log in

Rehabilitation of motor function in children with cerebral palsy based on motor imagery

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

To promote the rehabilitation of motor function in children with cerebral palsy (CP), we developed motor imagery (MI) based training system to assist their motor rehabilitation. Eighteen CP children, ten in short- and eight in long-term rehabilitation, participated in our study. In short-term rehabilitation, every 2 days, the MI datasets were collected; whereas the duration of two adjacency MI experiments was ten days in the long-term protocol. Meanwhile, within two adjacency experiments, CP children were requested to daily rehabilitate the motor function based on our system for 30 min. In both strategies, the promoted motor information processing was observed. In terms of the relative signal power spectra, a main effect of time was revealed, as the promoted power spectra were found for the last time of MI recording, compared to that of the first one, which first validated the effectiveness of our intervention. Moreover, as for network efficiency related to the motor information processing, compared to the first MI, the increased network properties were found for the last MI, especially in long-term rehabilitation in which CP children experienced a more obvious efficiency promotion. These findings did validate that our MI-based rehabilitation system has the potential for CP children to assist their motor rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aisen ML, Kerkovich D, Mast J, Mulroy S, Wren TAL, Kay RM, Rethlefsen SA (2011) Cerebral palsy: clinical care and neurological rehabilitation. Lancet Neurol 10:844–852. https://doi.org/10.1016/s1474-4422(11)70176-4

    Article  PubMed  Google Scholar 

  • Bakhtiari R, Cummine J, Reed A, Fox CM, Chouinard B, Cribben I, Boliek CA (2017) Changes in brain activity following intensive voice treatment in children with cerebral palsy. Hum Brain Mapp. https://doi.org/10.1002/hbm.23669

    Article  PubMed  PubMed Central  Google Scholar 

  • Başar-Eroğlu C, Schmiedt-Fehr C, Mathes B (2013) Auditory-evoked alpha oscillations imply reduced anterior and increased posterior amplitudes in schizophrenia. Supplements to Clinical neurophysiology, vol 62. Elsevier, Amsterdam, pp 121–129

    Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. https://doi.org/10.1038/nrn2575

    Article  CAS  PubMed  Google Scholar 

  • Cheyne D, Gaetz W, Garnero L, Lachaux J-P, Ducorps A, Schwartz D, Varela FJ (2003) Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Cogn Brain Res 17:599–611

    Article  Google Scholar 

  • Chong BW, Stinear CM (2017) Modulation of motor cortex inhibition during motor imagery. J Neurophysiol 117:1776–1784. https://doi.org/10.1152/jn.00549.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury A et al (2018) Active physical practice followed by mental practice using BCI-driven hand exoskeleton: a pilot trial for clinical effectiveness and usability. IEEE J Biomed Health Informatics 22:1786–1795

    Article  Google Scholar 

  • Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT Press, Cambridge

    Book  Google Scholar 

  • Craje C, van Elk M, Beeren M, van Schie HT, Bekkering H, Steenbergen B (2010) Compromised motor planning and motor Imagery in right. Hemiparetic Cerebral Palsy Res Dev Disabilities 31:1313–1322. https://doi.org/10.1016/j.ridd.2010.07.010

    Article  Google Scholar 

  • Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7:1032–1043

    Article  Google Scholar 

  • Egner T, Gruzelier JH (2001) Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport 12:4155–4159

    Article  CAS  Google Scholar 

  • Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol

  • Elgendi M, Vialatte F, Cichocki A, Latchoumane C, Jeong J, Dauwels J (2011) Optimization of EEG frequency bands for improved diagnosis of Alzheimer disease. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp 6087–6091

    Chapter  Google Scholar 

  • Foong R et al (2019) Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation. IEEE Trans Biomed Eng 67:786–795

    Article  Google Scholar 

  • Graham H et al. (2016) Cerebral palsy. Nat Rev Disease Primers 2

  • Gunji A, Ishii R, Chau W, Kakigi R, Pantev C (2007) Rhythmic brain activities related to singing in humans. Neuroimage 34:426–434

    Article  Google Scholar 

  • Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89:989–1002

    Article  Google Scholar 

  • Hétu S, Grégoire M, Saimpont A, Coll M-P, Eugène F, Michon P-E, Jackson PL (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37:930–949

    Article  Google Scholar 

  • Howe RC, Sterman M (1972) Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalogr Clin Neurophysiol 32:681–695

    Article  CAS  Google Scholar 

  • Isaac AR (1992) Mental practice-does it work in the field? Sport Psychol 6:192–198

    Article  Google Scholar 

  • Ishii R et al (2009) Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography. Clin Neurophysiol 120:497–504

    Article  Google Scholar 

  • Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted. MRI Graph Theory NeuroImage 40:1064–1076. https://doi.org/10.1016/j.neuroimage.2007.10.060

    Article  PubMed  Google Scholar 

  • Kenyon LK, Farris JP, Aldrich NJ, Rhodes S (2018) Does power mobility training impact a child’s mastery motivation and spectrum of EEG activity? An exploratory project. Disabil Rehabil Assist Technol 13:665–673

    Article  Google Scholar 

  • Kerr AL, Cheng S-Y, Jones TA (2011) Experience-dependent neural plasticity in the adult damaged brain. J Commun Disorders 44:538–548

    Google Scholar 

  • Li F et al (2015) Relationships between the resting-state network and the P3: evidence from a scalp EEG study Sci Rep 5:15129. https://doi.org/10.1038/Srep15129

  • Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C (2010) An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans Bio-med Eng 57:2495–2505. https://doi.org/10.1109/Tbme.2010.2055564

    Article  Google Scholar 

  • Li Y, Pan J, Long J, Yu T, Wang F, Yu Z, Wu W (2016) Multimodal BCIs: target detection, multidimensional control, and awareness evaluation in patients with disorder of consciousness. P IEEE 104:332–352. https://doi.org/10.1109/Jproc.2015.2469106

  • McCrum-Gardner E (2008) Which is the correct statistical test to use? Br J Oral Maxillofacial Surg 46:38–41

    Article  Google Scholar 

  • Menicucci D, Di Gruttola F, Cesari V, Gemignani A, Manzoni D, Sebastiani L (2020) Task-independent electrophysiological correlates of motor imagery ability from kinaesthetic and visual perspectives. Neuroscience 443:176–187

    Article  CAS  Google Scholar 

  • Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 60:306–326. https://doi.org/10.1016/j.brainresrev.2008.12.024

    Article  PubMed  Google Scholar 

  • Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: differential effects of kinesthetic and visual–motor mode of imagery in single-trial. EEG Cogn Brain Res 25:668–677

    Article  Google Scholar 

  • Neuper C, Wörtz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Progress Brain Res 159:211–222

    Article  Google Scholar 

  • Niemarkt HJ et al (2011) Maturational changes in automated EEG spectral power analysis in preterm infants. Pediatric Res 70:529–534

    Article  Google Scholar 

  • Olson AK, Eadie BD, Ernst C, Christie BR (2006) Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16:250–260

    Article  CAS  Google Scholar 

  • Page SJ, Levine P, Sisto S, Johnston MV (2001) A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil 15:233–240

    Article  CAS  Google Scholar 

  • Papadelis C, Kourtidou-Papadeli C, Bamidis P, Albani M (2007) Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort. Brain Cogn 64:74–85

    Article  Google Scholar 

  • Papadelis C, Ahtam B, Nazarova M, Nimec D, Snyder B, Grant PE, Okada Y (2014) Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study. Front Hum Neurosci 8:725. https://doi.org/10.3389/fnhum.2014.00725

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadelis C et al (2018) Reorganization of the somatosensory cortex in hemiplegic cerebral palsy associated with impaired sensory tracts. NeuroImage Clin 17:198–212

    Article  Google Scholar 

  • Papadelis C, Kaye H, Shore B, Snyder B, Grant PE, Rotenberg A (2019) Maturation of corticospinal tracts in children with hemiplegic cerebral palsy assessed by diffusion tensor imaging and transcranial magnetic stimulation. Front Human Neurosci 13:254

    Article  Google Scholar 

  • Pfurtscheller G, Brunner C, Schlögl A, Da Silva FL (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31:153–159

    Article  CAS  Google Scholar 

  • Rosner B, Glynn RJ, Lee MLT (2006) The Wilcoxon signed rank test for paired comparisons of clustered data. Biometrics 62:185–192

    Article  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  • Sharma N, Pomeroy VM, Baron J-C (2006) Motor imagery a backdoor to the motor system after stroke? Stroke 37:1941–1952. https://doi.org/10.1161/01.Str.0000226902.43357.Fc

    Article  PubMed  Google Scholar 

  • Shin YK, Lee DR, Hwang HJ, You SJH, Im CH (2012) A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. NeuroRehabilitation 31:349–355

    Article  Google Scholar 

  • Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14:1246–1255

    Article  Google Scholar 

  • Stam Cv, Van Straaten E (2012) The organization of physiological brain networks clinical neurophysiology: official. J Int Federation Clin Neurophysiol 123:1067–1087. https://doi.org/10.1016/j.clinph.2012.01.011

    Article  CAS  Google Scholar 

  • Steenbergen B, Crajé C, Nilsen DM, Gordon AM (2009) Motor imagery training in hemiplegic cerebral palsy: a potentially useful therapeutic tool for rehabilitation. Dev Med Child Neurol 51:690–696

    Article  Google Scholar 

  • Sterman M (1977) Sensorimotor EEG operant conditioning: experimental and clinical effects. Pavlovian J Biol Sci Official J 12:63–92

    CAS  Google Scholar 

  • Stevens JA, Stoykov MEP (2003) Using motor imagery in the rehabilitation of Hemiparesis. Arch Phys Med Rehab 84:1090–1092

    Article  Google Scholar 

  • Stippich C, Ochmann H, Sartor K (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331:50–54

    Article  CAS  Google Scholar 

  • Teflioudi EP, Zafeiriou DI, Vargiami E, Kontopoulos E, Tsikoulas I (2011) Somatosensory evoked potentials in children with bilateral spastic cerebral palsy. Pediatric Neurol 44:177–182

    Article  Google Scholar 

  • Wang R, Wang J, Yu H, Wei X, Yang C, Deng B (2015) Power spectral density and coherence analysis of Alzheimer’s. EEG Cogn Neurodyn 9:291–304

    Article  Google Scholar 

  • Wittenberg GF (2009) Motor mapping in cerebral palsy. Dev Med Child Neurol 51(Suppl 4):134–139

    Article  Google Scholar 

  • Yan J, Sun J, Guo X, Jin Z, Li Y, Li Z, Tong S (2013) Motor imagery cognitive network after left ischemic stroke: study of the patients during mental rotation task. PLoS ONE 8:e77325. https://doi.org/10.1371/journal.pone.0077325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R et al (2015) Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng 12:066024. https://doi.org/10.1088/1741-2560/12/6/066024

    Article  PubMed  Google Scholar 

  • Zimmermann-Schlatter A, Schuster C, Puhan MA, Siekierka E, Steurer J (2008) Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil 5:8. https://doi.org/10.1186/1743-0003-5-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Key Research and Development Program of Guangdong Province, China (#2018B030339001), in part by the National Natural Science Foundation of China (#81330032, #81771925, #61961160705, #U19A2082, and #61901077), in part by the National Key Research and Development Plan of China (#2017YFB1002501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Yin, Dezhong Yao or Peng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Jiang, L., Li, Y. et al. Rehabilitation of motor function in children with cerebral palsy based on motor imagery. Cogn Neurodyn 15, 939–948 (2021). https://doi.org/10.1007/s11571-021-09672-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-021-09672-3

Keywords

Navigation