Skip to main content
Log in

Canopy Closure Retards Fine Wood Decomposition in Subtropical Regenerating Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Wood decomposition is faster in open habitats than closed-canopy forests, with the mechanisms unclear. When allowing access, termites outcompete fungi during wood decomposition. If increasing canopy density shifts the dominance from termites to fungi, decomposition rates will fall. We conducted wood decomposition experiments in 148 plots of two regenerating forest sites (Site A vs. B) in subtropical China with tree species diversity and composition (for example, specific leaf area) manipulated. Branches of seven species with varying quality were deployed and measured for wood mass-loss rates and decomposer abundance at two time steps (that is, after 1 year and 2 years). We also monitored understory microclimate and predatory ant diversity in 40 plots of Site A. We found that higher canopy density drove the shift of dominance from termites to fungi via facilitating predatory ants and wetter–cooler microclimate. Furthermore, termites promoted decomposition after 1 year especially for the species with highest wood quality, but fungi slowed decomposition after 2 years especially for two species with lower quality. Notably, canopy density negatively correlated with wood mass-loss rates in closed-canopy Site A but not so in more open Site B. Tree diversity and community-weighted mean specific leaf area increased canopy density but did not affect abundance nor decomposition. Our study highlights the importance of canopy density for retarding fine wood decomposition in closed-canopy regenerating forests, probably via shifting the dominance from more (that is, termites) to less efficient decomposer (that is, fungi). Future cross-regional studies are necessary to test the generality of canopy density effect on wood decomposition and the related mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • A’Bear AD, Jones TH, Kandeler E, Boddy L. 2014. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol Biochem 70:151–158.

    Google Scholar 

  • Abrego N, Salcedo I. 2014. Response of wood-inhabiting fungal community to fragmentation in a beech forest landscape. Fungal Ecol 8:18–27.

    Google Scholar 

  • Agosti D, Majer J, Alonso LE, Schultz T. 2000. Ants: standard methods for measuring and monitoring biodiversity. Washington D.C., USA: Smithsonian Institution Press

  • Ahuatzin DA, Corro EJ, Jaimes AA, González JEV, Feitosa RM, Ribeiro MC, Acosta JCL, Coates R, Dáttilo W. 2019. Forest cover drives leaf litter ant diversity in primary rainforest remnants within human-modified tropical landscapes. Biodivers Conserv 28:1091–1107.

    Google Scholar 

  • Alkama R, Cescatti A. 2016. Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604.

    CAS  PubMed  Google Scholar 

  • Alroy J. 2017. Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci 114:6056–61. http://www.pnas.org/content/114/23/6056.abstract

  • Andersen AN. 2019. Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. J Anim Ecol 88:350–362.

    PubMed  Google Scholar 

  • Anderson D, Burnham K. 2004. Model selection and multi-model inference, 2nd edn. New York, USA: Springer.

    Google Scholar 

  • Armbrecht I, Gallego MC. 2007. Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomol Exp Appl 124:261–267.

    Google Scholar 

  • Armbrecht I, Perfecto I. 2003. Litter-twig dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantations of contrasting habitat quality in Mexico. Agric Ecosyst Environ 97:107–115.

    Google Scholar 

  • von Arx G, Dobbertin M, Rebetez M. 2012. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166:144–155.

    Google Scholar 

  • Ashton LA, Griffiths HM, Parr CL, Evans TA, Didham RK, Hasan F, Teh YA, Tin HS, Vairappan CS, Eggleton P. 2019. Termites mitigate the effects of drought in tropical rainforest. Science 363:174–177.

    CAS  PubMed  Google Scholar 

  • Baccaro FB, Ketelhut SM, De Morais JW. 2010. Resource distribution and soil moisture content can regulate bait control in an ant assemblage in Central Amazonian forest. Austral Ecol 35:274–281.

    Google Scholar 

  • Bässler C, Müller J, Dziock F, Brandl R. 2010. Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol 98:822–832.

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.

    Google Scholar 

  • Bradford MA, Warren RJ II, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR. 2014. Climate fails to predict wood decomposition at regional scales. Nat Clim Chang 4:625–630.

    CAS  Google Scholar 

  • Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding B, Durka W, Erfmeier A, Gutknecht JLM, Guo D, Guo L, Härdtle W, He J, Klein A, Kühn P, Liang Y, Liu X, Michalski S, Niklaus PA, Pei K, Scherer-Lorenzen M, Schuldt T, Andreas S, Seidler G, Trogisch S, von Oheimb G, Welk E, Wirth C, Wubet T, Yang X, Yu M, Zhou S, Zhou H, Fischer M, Ma K, Schmid B. 2014. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol 5:74–89.

    Google Scholar 

  • Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180.

    CAS  PubMed  Google Scholar 

  • Buczkowski G, Bennett G. 2007. Protein marking reveals predation on termites by the woodland ant, Aphaenogaster rudis. Insectes Soc 54:219–224.

    Google Scholar 

  • Cerezer FO, de Azevedo RA, Nascimento MAS, Franklin E, de Morais JW, de Sales Dambros C. 2020. Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Glob Ecol Biogeogr 29:1967–1977. https://doi.org/10.1111/geb.13167.

    Article  Google Scholar 

  • Chauvat M, Zaitsev AS, Wolters V. 2003. Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 137:269–276.

    PubMed  Google Scholar 

  • Cheesman AW, Cernusak LA, Zanne AE. 2018. Relative roles of termites and saprotrophic microbes as drivers of wood decay: A wood block test. Austral Ecol 43:257–267. https://doi.org/10.1111/aec.12561.

    Article  Google Scholar 

  • Cossalter C, Pye-Smith C. 2003. Fast-Wood Forestry: Myths and Realities. Bogor, Indonesia: Center for International Forestry Research.

    Google Scholar 

  • da Costa RR, Hu H, Li H, Poulsen M. 2019. Symbiotic Plant Biomass Decomposition in Fungus-Growing Termites. Insects 10:87.

    PubMed Central  Google Scholar 

  • Crowther TW, Boddy L, Jones TH. 2011. Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol Lett 14:1134–1142.

    PubMed  Google Scholar 

  • Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC. 2018. Classifying drivers of global forest loss. Science 361:1108–1111.

    CAS  PubMed  Google Scholar 

  • DeFries R, Achard F, Brown S, Herold M, Murdiyarso D, Schlamadinger B, de Souza Jr C. 2007. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ Sci Policy 10:385–394.

    Google Scholar 

  • Dossa GGO, Paudel E, Schaefer D, Zhang J-L, Cao K-F, Xu J-C, Harrison RD. 2020. Quantifying the factors affecting wood decomposition across a tropical forest disturbance gradient. For Ecol Manage 468:118166. http://www.sciencedirect.com/science/article/pii/S0378112720305090

  • Eichenberg D, Pietsch K, Meister C, Ding W, Yu M, Wirth C. 2017. The effect of microclimate on wood decay is indirectly altered by tree species diversity in a litterbag study. J Plant Ecol 10:170–178.

    Google Scholar 

  • Fei H, Henderson G. 2002. Formosan subterranean termite (Isoptera: Rhinotermitidae) wood consumption and worker survival as affected by temperature and soldier proportion. Environ Entomol 31:509–514.

    Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT. 2006. Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc B Biol Sci 273:1689–1695.

    Google Scholar 

  • Fichtner A, Härdtle W, Li Y, Bruelheide H, Kunz M, von Oheimb G. 2017. From competition to facilitation: how tree species respond to neighbourhood diversity. Ecol Lett 20:892–900.

    PubMed  Google Scholar 

  • Finér L, Jurgensen M, Palviainen M, Piirainen S, Page-Dumroese D. 2016. Does clear-cut harvesting accelerate initial wood decomposition? A five-year study with standard wood material. For Ecol Manage 372:10–8. http://www.sciencedirect.com/science/article/pii/S0378112716301505

  • Forrester JA, Mladenoff DJ, Gower ST, Stoffel JL. 2012. Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. For Ecol Manage 265:124–132.

    Google Scholar 

  • Gautam BK, Henderson G. 2011a. Relative humidity preference and survival of starved Formosan subterranean termites (Isoptera: Rhinotermitidae) at various temperature and relative humidity conditions. Environ Entomol 40:1232–1238.

    PubMed  Google Scholar 

  • Gautam BK, Henderson G. 2011b. Wood consumption by Formosan subterranean termites (Isoptera: Rhinotermitidae) as affected by wood moisture content and temperature. Ann Entomol Soc Am 104:459–464.

    Google Scholar 

  • Gautam BK, Henderson G. 2014. Water transport by Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ Entomol 43:1399–1405.

    PubMed  Google Scholar 

  • Germany MS, Bruelheide H, Erfmeier A. 2019. Janzen-Connell effects in a forest BEF experiment: Strong distance-dependent seedling establishment of multiple species. Ecology 100:e02736.

    PubMed  Google Scholar 

  • Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. 2019. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol 9:12113–12127.

    PubMed  PubMed Central  Google Scholar 

  • Grace JB, Bollen KA. 2005. Interpreting the results from multiple regression and structural equation models. Bull Ecol Soc Am 86:283–295.

    Google Scholar 

  • Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, Schweiger EW. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3:1–44.

    Google Scholar 

  • Griffiths HM, Ashton LA, Evans TA, Parr CL, Eggleton P. 2019. Termites can decompose more than half of deadwood in tropical rainforest. Curr Biol 29:R118–R119. https://doi.org/10.1016/j.cub.2019.01.012.

    Article  CAS  PubMed  Google Scholar 

  • Grossman JJ, Cavender-Bares J, Hobbie SE, Reich PB, Montgomery RA. 2017. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98:2601–2614.

    PubMed  Google Scholar 

  • Heaton LLM, Jones NS, Fricker MD. 2020. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun 11:2594. https://doi.org/10.1038/s41467-020-16072-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herault B, Bachelot B, Poorter L, Rossi V, Bongers F, Chave J, Paine CET, Wagner F, Baraloto C. 2011. Functional traits shape ontogenetic growth trajectories of rain forest tree species. J Ecol 99:1431–1440.

    Google Scholar 

  • Holden ZA, Klene AE, F. Keefe R, G. Moisen G. 2013. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures. Agric For Meteorol 180:281–6. http://www.sciencedirect.com/science/article/pii/S016819231300169X

  • Hölldobler B, Wilson EO. 1990. The Ants. Berlin, Heidelberg, Germany; New York, USA: Springer

  • Houghton RA, Nassikas AA. 2018. Negative emissions from stopping deforestation and forest degradation, globally. Glob Chang Biol 24:350–359.

    PubMed  Google Scholar 

  • Hsieh TC, Ma KH, Chao A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456.

    Google Scholar 

  • Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang X, Liu X, Pei K, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen X-Y, Chesters D, Bing-Yang D, Durka W, Erfmeier A, Fang J, Fischer M, Guo L-D, Guo D, Gutknecht JLM, He J-S, He C-L, Hector A, Hönig L, Hu R-Y, Klein A-M, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi X, Tan M-Z, Tang Z, Trogisch S, Wang Z, Welk E, Wirth C, Wubet T, Xiang W, Yu M, Yu X-D, Zhang J, Zhang S, Zhang N, Zhou H-Z, Zhu C-D, Zhu L, Bruelheide H, Ma K, Niklaus PA, Schmid B. 2018. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362:80–83.

    CAS  PubMed  Google Scholar 

  • Joly F, Milcu A, Scherer-Lorenzen M, Jean L, Bussotti F, Dawud SM, Müller S, Pollastrini M, Raulund-Rasmussen K, Vesterdal L, Hättenschwiler S. 2017. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol 214:1281–1293.

    CAS  PubMed  Google Scholar 

  • Kaspari M, Weiser MD. 2000. Ant activity along moisture gradients in a neotropical forest. Biotropica 32:703–711.

    Google Scholar 

  • Krah F, Seibold S, Brandl R, Baldrian P, Müller J, Bässler C. 2018. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J Ecol 106:1428–1442.

    Google Scholar 

  • Kröber W, Heklau H, Bruelheide H. 2015. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol 17:373–383.

    PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26. http://doi.org/https://doi.org/10.18637/jss.v082.i13

  • Lefcheck JS. 2016. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579.

    Google Scholar 

  • Leitner M, Davies AB, Parr CL, Eggleton P, Robertson MP. 2018. Woody encroachment slows decomposition and termite activity in an African savanna. Glob Chang Biol 24:2597–2606.

    PubMed  Google Scholar 

  • Lindahl BD, Finlay RD, Olsson S. 2001. Simultaneous, bidirectional translocation of 32P and 33P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytol 150:189–194.

    Google Scholar 

  • Longhurst C, Johnson RA, Wood TG. 1979. Foraging, recruitment and predation by Decamorium uelense (Sanstchi)(Formicidae: Myrmicinae) on termites in southern Guinea Savanna, Nigeria. Oecologia 38:83–91.

    CAS  PubMed  Google Scholar 

  • Lüdecke D. 2018. sjPlot: Data visualization for statistics in social science. R Packag version 2619000. https://cran.r-project.org/package=sjPlot

  • Lustenhouwer N, Maynard DS, Bradford MA, Lindner DL, Oberle B, Zanne AE, Crowther TW. 2020. A trait-based understanding of wood decomposition by fungi. Proc Natl Acad Sci 117:11551–11558.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J. 2008. Old-growth forests as global carbon sinks. Nature 455:213–215.

    CAS  PubMed  Google Scholar 

  • MacArthur RH, Diamond JM, Karr JR. 1972. Density compensation in island faunas. Ecology 53:330–342.

    Google Scholar 

  • Maynard DS, Bradford MA, Covey KR, Lindner D, Glaeser J, Talbert DA, Tinker PJ, Walker DM, Crowther TW. 2019. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat Microbiol 4:846–853.

    CAS  PubMed  Google Scholar 

  • Mill AE. 1984. Predation by the ponerine ant Pachycondyla commutata on termites of the genus Syntermes in Amazonian rain forest. J Nat Hist 18:405–410.

    Google Scholar 

  • Milligan MC, Johnson MD, Garfinkel M, Smith CJ, Njoroge P. 2016. Quantifying pest control services by birds and ants in Kenyan coffee farms. Biol Conserv 194:58–65.

    Google Scholar 

  • Nordén J, Penttilä R, Siitonen J, Tomppo E, Ovaskainen O. 2013. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J Ecol 101:701–712.

    Google Scholar 

  • Oberst S, Lenz M, Lai JCS, Evans TA. 2019. Termites manipulate moisture content of wood to maximize foraging resources. Biol Lett 15:20190365.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–993.

    CAS  PubMed  Google Scholar 

  • Patel JS, Lee S-B, Chouvenc T, Su N-Y. 2020. Inferring termite colony size using wood consumption in subterranean termites (Blattodea: Rhinotermitidae) in laboratory-rearing conditions. J Econ Entomol 113:905–910. https://doi.org/10.1093/jee/toz353.

    Article  PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM. 2016. Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14:434–447.

    CAS  PubMed  Google Scholar 

  • Peng S, Schmid B, Haase J, Niklaus PA. 2017. Leaf area increases with species richness in young experimental stands of subtropical trees. J Plant Ecol 10:128–135. https://doi.org/10.1093/jpe/rtw016.

    Article  Google Scholar 

  • Pietsch KA, Eichenberg D, Nadrowski K, Bauhus J, Buscot F, Purahong W, Wipfler B, Wubet T, Yu M, Wirth C. 2019. Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos 128:701–715. https://doi.org/10.1111/oik.04879.

    Article  Google Scholar 

  • Pretzsch H. 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage 327:251–264.

    Google Scholar 

  • Pugh TAM, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L. 2019. Role of forest regrowth in global carbon sink dynamics. Proc Natl Acad Sci 116:4382–4387.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purahong W, Pietsch KA, Bruelheide H, Wirth C, Buscot F, Wubet T. 2019. Potential links between wood-inhabiting and soil fungal communities: Evidence from high-throughput sequencing. Microbiologyopen 8:e00856. https://doi.org/10.1002/mbo3.856.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing https://www.r-project.org/

  • Rispoli FJ, Zeng S, Green T, Higbie J. 2014. Even birds follow Pareto’s 80–20 rule. Significance 11:37–38. https://doi.org/10.1111/j.1740-9713.2014.00725.x.

    Article  Google Scholar 

  • Ruete A, Snäll T, Jonsson BG, Jönsson M. 2017. Contrasting long-term effects of transient anthropogenic edges and forest fragment size on generalist and specialist deadwood-dwelling fungi. J Appl Ecol 54:1142–1151.

    Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G. 1986. Akaike Information Criterion Statistics, 1st edn. Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Schuldt A, Ebeling A, Kunz M, Staab M, Guimarães-Steinicke C, Bachmann D, Buchmann N, Durka W, Fichtner A, Fornoff F. 2019. Multiple plant diversity components drive consumer communities across ecosystems. Nat Commun 10:1460.

    PubMed  PubMed Central  Google Scholar 

  • Shipley B. 2013. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94:560–564.

    PubMed  Google Scholar 

  • Silva PSD, Bieber AGD, Corrêa MM, Leal IR. 2011. Do leaf-litter attributes affect the richness of leaf-litter ants? Neotrop Entomol 40:542–547.

    PubMed  Google Scholar 

  • Skarbek CJ, Noack M, Bruelheide H, Härdtle W, von Oheimb G, Scholten T, Seitz S, Staab M. 2020. A tale of scale: plot but not neighbourhood tree diversity increases leaf litter ant diversity. J Anim Ecol 89:299–308.

    PubMed  Google Scholar 

  • Staab M, Blüthgen N, Klein AM. 2015. Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos 124:827–834.

    Google Scholar 

  • Staab M, Fornoff F, Klein AM, Blüthgen N. 2017. Ants at plant wounds: a little-known trophic interaction with evolutionary implications for ant-plant interactions. Am Nat 190:442–450.

    PubMed  Google Scholar 

  • Staab M, Schuldt A, Assmann T, Klein AM. 2014. Tree diversity promotes predator but not omnivore ants in a subtropical Chinese forest. Ecol Entomol 39:637–647.

    Google Scholar 

  • Stasinopoulos DM, Rigby RA. 2007. Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46.

    Google Scholar 

  • Stasinopoulos M, Rigby B, Akantziliotou C. 2008. Instructions on how to use the GAMLSS package in R. Chem Commun 36:4342–4344.

    Google Scholar 

  • Stokland JN, Siitonen J, Jonsson BG. 2012. Biodiversity in Dead Wood. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Tomao A, Bonet JA, Castaño C, De-Miguel S. 2020. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For Ecol Manage 457:117678.

    Google Scholar 

  • Del Toro I, Ribbons RR, Pelini SL. 2012. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News 17:133–146.

    Google Scholar 

  • Traniello JFA, Leuthold RH. 2000. Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M, Eds. Termites: Evolution, Sociality, Symbioses, Ecology, 1st edn. Dordrecht, Netherlands: Springer. pp 141–168.

    Google Scholar 

  • Tuma J, Eggleton P, Fayle TM. 2020. Ant-termite interactions: an important but under-explored ecological linkage. Biol Rev 95:555–572. https://doi.org/10.1111/brv.12577.

    Article  PubMed  Google Scholar 

  • Ulyshen MD. 2016. Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85.

    PubMed  Google Scholar 

  • Veldhuis MP, Laso FJ, Olff H, Berg MP. 2017. Termites promote resistance of decomposition to spatiotemporal variability in rainfall. Ecology 98:467–477.

    PubMed  Google Scholar 

  • Weißbecker C, Wubet T, Lentendu G, Kühn P, Scholten T, Bruelheide H, Buscot F. 2018. Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests . Front Microbiol 9:2312. https://www.frontiersin.org/article/https://doi.org/10.3389/fmicb.2018.02312

  • Wen XL, Wen P, Cal D, Sillamdussès D, Šobotník J. 2017. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Proc R Soc B Biol Sci 284:20170121.

    Google Scholar 

  • Wilson EO, Brown WL. 1984. Behavior of the cryptobiotic predaceous ant Eurhopalothrix heliscata, n. sp. (Hymenoptera: Formicidae: Basicerotini). Insectes Soc 31:408–428.

    Google Scholar 

  • Wiltz B. 2015. Effect of temperature and humidity on survival of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 59:381–394.

    Google Scholar 

  • Woon JS, Boyle MJW, Ewers RM, Chung A, Eggleton P. 2019. Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests. Insectes Soc 66:57–64.

    Google Scholar 

  • Wu D, Pietsch KA, Staab M, Yu M. 2021. Wood species identity alters dominant factors driving fine wood decomposition along a tree diversity gradient in subtropical plantation forests. Biotropica. https://doi.org/10.1111/btp.12906.

    Article  Google Scholar 

  • Yek SH, Mueller UG. 2011. The metapleural gland of ants. Biol Rev 86:774–791.

    PubMed  Google Scholar 

  • Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368:772–5. http://science.sciencemag.org/content/368/6492/772.abstract

Download references

Acknowledgements

We are grateful to Christian Wirth and Katherina Pietsch for their financial support and constructive comments on the experimental design. We gratefully acknowledge funding by the International Collaborative Project of National Key R&D Plan of China (2018YFE0112800), the Major Project of Zhejiang Provincial Natural Science Foundation of China (LD19C030001) and the German Research Foundation (DFG FOR 981/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjian Yu.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Author contributions DW and MY conceived the ideas and designed the study. DW collected field data. DW analyzed the data. DW led thse writing of the first draft of the manuscript. MY and MS substantially contributed to revise the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1595 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Staab, M. & Yu, M. Canopy Closure Retards Fine Wood Decomposition in Subtropical Regenerating Forests. Ecosystems 24, 1875–1890 (2021). https://doi.org/10.1007/s10021-021-00622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00622-y

Keywords

Navigation