Skip to main content
Log in

Short Simplex Paths in Lattice Polytopes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The goal of this paper is to design a simplex algorithm for linear programs on lattice polytopes that traces “short” simplex paths from any given vertex to an optimal one. We consider a lattice polytope P contained in \([0,k]^n\) and defined via m linear inequalities. Our first contribution is a simplex algorithm that reaches an optimal vertex by tracing a path along the edges of P of length in \(O(n^{4} k\, \hbox {log}\, k).\) The length of this path is independent from m and it is the best possible up to a polynomial function. In fact, it is only polynomially far from the worst-case diameter, which roughly grows as nk. Motivated by the fact that most known lattice polytopes are defined via \(0,\pm 1\) constraint matrices, our second contribution is a more sophisticated simplex algorithm which exploits the largest absolute value \(\alpha \) of the entries in the constraint matrix. We show that the length of the simplex path generated by this algorithm is in \(O(n^2k\, \hbox {log}\, ({nk} \alpha ))\). In particular, if \(\alpha \) is bounded by a polynomial in nk, then the length of the simplex path is in \(O(n^2k\, \hbox {log}\, (nk))\). For both algorithms, if P is “well described”, then the number of arithmetic operations needed to compute the next vertex in the path is polynomial in n, m, and \(\hbox {log}\, k\). If k is polynomially bounded in n and m, the algorithm runs in strongly polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Acketa, D.M., Žunić, J.D.: On the maximal number of edges of convex digital polygons included into an \(m\times m\)-grid. J. Combin. Theory Ser. A 69(2), 358–368 (1995)

    Article  MathSciNet  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  3. Alon, N., Vu, V.H.: Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs. J. Combin. Theory Ser. A 79(1), 133–160 (1997)

    Article  MathSciNet  Google Scholar 

  4. Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: 7th Annual Symposium on Computational Geometry (North Conway 1991), pp. 162–165. ACM, New York (1991)

  5. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  6. Blanchard, M., De Loera, J., Louveaux, Q.: On the length of monotone paths in polyhedra (2020). arXiv:2001.09575

  7. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Graduate Texts in Mathematics, vol. 271. Springer, Cham (2014)

    MATH  Google Scholar 

  8. Del Pia, A., Michini, C.: On the diameter of lattice polytopes. Discrete Comput. Geom. 55(3), 681–687 (2016)

    Article  MathSciNet  Google Scholar 

  9. Deza, A., Manoussakis, G., Onn, S.: Primitive zonotopes. Discrete Comput. Geom. 60(1), 27–39 (2018)

    Article  MathSciNet  Google Scholar 

  10. Deza, A., Pournin, L.: Improved bounds on the diameter of lattice polytopes. Acta Math. Hungar. 154(2), 457–469 (2018)

    Article  MathSciNet  Google Scholar 

  11. Deza, A., Pournin, L.: Primitive point packing (2020). arXiv:2006.14228

  12. Deza, A., Pournin, L., Sukegawa, N.: The diameter of lattice zonotopes. Proc. Am. Math. Soc. 148(8), 3507–3516 (2020)

    Article  MathSciNet  Google Scholar 

  13. Dinic, E.A.: An algorithm for the step-by-step decrease of discrepancies, and transport problems. In: Issled. Diskret. Mat., pp. 46–57. Nauka, Moscow (1973). (in Russian)

  14. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. Assoc. Comput. Mach. 19(2), 248–264 (1972)

    Article  Google Scholar 

  15. Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  Google Scholar 

  16. Gabow, H.N.: Scaling algorithms for network problems. J. Comput. Syst. Sci. 31(2), 148–168 (1985)

    Article  MathSciNet  Google Scholar 

  17. Kitahara, T., Mizuno, S.: On the number of solutions generated by the dual simplex method. Oper. Res. Lett. 40(3), 172–174 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kitahara, T., Mizuno, S.: A bound for the number of different basic solutions generated by the simplex method. Math. Program. Ser. A 137(1–2), 579–586 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kleinschmidt, P., Onn, S.: On the diameter of convex polytopes. Discrete Math. 102(1), 75–77 (1992)

    Article  MathSciNet  Google Scholar 

  20. Le Bodic, P., Pavelka, J.W., Pfetsch, M.E., Pokutta, S.: Solving MIPs via scaling-based augmentation. Discrete Optim. 27, 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  21. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  22. Mizuno, S.: The simplex method using Tardos’ basic algorithm is strongly polynomial for totally unimodular LP under nondegeneracy assumption. Optim. Methods Softw. 31(6), 1298–1304 (2016)

    Article  MathSciNet  Google Scholar 

  23. Naddef, D.: The Hirsch conjecture is true for \((0,1)\)-polytopes. Math. Program. 45(1), 109–110 (1989)

    Article  MathSciNet  Google Scholar 

  24. Pokutta, S.: Restarting algorithms: sometimes there is free lunch. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research (Vienna 2020), pp. 22–38. Springer, Cham (2020)

  25. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. Wiley, Chichester (1986)

    MATH  Google Scholar 

  26. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  27. Schulz, A.S., Weismantel, R., Ziegler, G.M.: \(0/1\)-Integer programming: optimization and augmentation are equivalent. In: Algorithms—ESA ’95 (Corfu 1995). Lecture Notes in Comput. Sci., vol. 979, pp. 473–483. Springer, Berlin (1995)

  28. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986)

    Article  MathSciNet  Google Scholar 

  29. Thiele, T.: Extremalprobleme für Punktmengen. PhD thesis, Freie Universität Berlin (1991)

  30. Ziegler, G.M.: Lectures on \(0/1\)-polytopes. In: Polytopes—Combinatorics and Computation (Oberwolfach 1997). DMV Sem., vol. 29, pp. 1–41. Birkhäuser, Basel (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Michini.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Pia, A., Michini, C. Short Simplex Paths in Lattice Polytopes. Discrete Comput Geom 67, 503–524 (2022). https://doi.org/10.1007/s00454-020-00268-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00268-y

Keywords

Mathematics Subject Classification

Navigation