Skip to main content

Advertisement

Log in

Polarity scaffolds signaling in epithelial cell permeability

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

As an integral part of the innate immune system, the epithelial membrane is exposed to an array of insults that may trigger an immune response. One of the immune system’s main functions is to regulate the level of communications between the mucosa and the lumen of various tissues. While it is clear that inhaled or ingested substances, or microorganisms may induce changes that affect the epithelial barrier in various ways, the proteins involved in the signaling cascades and physiological events leading to the regulation and maintenance of the barrier are not always well characterized. We review here some of the signaling components involved in regulating the barrier’s paracellular permeability, and their potential effects on the activation of an immune response. While an effective immune response must be launched against pathogenic insults, tolerance must also be maintained for non-pathogenic antigens such as those in the commensal flora or for endogenous metabolites. Along with other members of the innate and adaptive immunity, the endocannabinoid system also plays an instrumental role in maintaining the balance between inflammation and tolerance. We discuss the potential effects of endo- and phytocannabinoids on epithelial permeability and how the dysregulation of this system could be involved in diseases and targeted for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Glencross DA, Ho T-R, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radical Biol Med. 2020;151:56–68.

    Article  CAS  Google Scholar 

  2. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50:1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M. Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol. 2018;81:2–12.

    Article  CAS  PubMed  Google Scholar 

  4. Otani T, Furuse M. Tight junction structure and function revisited. Trends Cell Biol. 2020;30:805–17.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Margolis B. Apical junctional complexes and cell polarity. Kidney Int. 2007;72:1448–58.

    Article  CAS  PubMed  Google Scholar 

  6. Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157–65.

    Article  PubMed  CAS  Google Scholar 

  7. Coopman P, Djiane A. Adherens junction and E-cadherin complex regulation by epithelial polarity. Cell Mol Life Sci. 2016;73:3535–53.

    Article  CAS  PubMed  Google Scholar 

  8. Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol. 2014;50:857–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res. 2017;358:39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Su W-H, Mruk DD, Wong EWP, Lui W-Y, Cheng CY. Polarity protein complex scribble/Lgl/Dlg and epithelial cell barriers. Adv Exp Med Biol. 2012;763:149–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nelson WJ, Nusse R. Convergence of Wnt, [beta]-Catenin, and cadherin pathways. Science. 2004;303:1483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee B, Moon KM, Kim CY. Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals [Internet]. J Immunol Res. 2018 [cited 2020 Jul 23]. https://www.hindawi.com/journals/jir/2018/2645465/

  13. Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol. 2010;177:512–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schumann M, Siegmund B, Schulzke JD, Fromm M. Celiac disease: role of the epithelial barrier. Cell Mol Gastroenterol Hepatol. 2017;3:150–62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Michel D, Arsanto J-P, Massey-Harroche D, Béclin C, Wijnholds J, Bivic AL. PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. J Cell Sci. 2005;118:4049–57.

    Article  CAS  PubMed  Google Scholar 

  16. Gao Y, Lui W, Lee WM, Cheng CY. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep [Internet]. 2016 [cited 2020 Jul 28];6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928075/

  17. Margolis B. The crumbs3 polarity protein. Cold Spring Harb Perspect Biol. 2018;10:a027961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tilston-Lünel AM, Haley KE, Schlecht NF, Wang Y, Chatterton ALD, Moleirinho S, et al. Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells. J Mol Cell Biol. 2016;8:439–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Misra JR, Irvine KD. The hippo signaling network and its biological functions. Annu Rev Genet. 2018;52:65–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bae SJ, Luo X. Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep [Internet]. 2018 [cited 2020 Jul 24];38. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131212/

  21. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The crumbs complex couples cell density sensing to hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 2010;19:831–44.

    Article  CAS  PubMed  Google Scholar 

  22. Szymaniak AD, Mahoney JE, Cardoso WV, Varelas X. Crumbs3-mediated polarity directs airway epithelial cell fate through the hippo pathway effector yap. Dev Cell. 2015;34:283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Riga A, Castiglioni VG, Boxem M. New insights into apical-basal polarization in epithelia. Curr Opin Cell Biol. 2020;62:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki A, Ohno S. The PAR-aPKC system: lessons in polarity. J Cell Sci. 2006;119:979–87.

    Article  CAS  PubMed  Google Scholar 

  25. Sumigray KD, Peifer M. Cell shape by coercion: Par1 and aPKC put the squeeze on junctions. Dev Cell. 2012;22:907–8.

    Article  CAS  PubMed  Google Scholar 

  26. Reich JD, Hubatsch L, Illukkumbura R, Peglion F, Bland T, Hirani N, et al. Regulated activation of the PAR polarity network ensures a timely and specific response to spatial cues. Curr Biol. 2019;29(1911–1923):e5.

    Google Scholar 

  27. Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of cell polarity–controlled epithelial homeostasis and immunity in the intestine. Cold Spring Harb Perspect Biol [Internet]. 2017 [cited 2020 Jun 4];9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495056/

  28. Helfrich I, Schmitz A, Zigrino P, Michels C, Haase I, le Bivic A, et al. Role of aPKC isoforms and their binding partners Par3 and Par6 in epidermal barrier formation. J Investig Dermatol. 2007;127:782–91.

    Article  CAS  PubMed  Google Scholar 

  29. Mashukova A, Wald FA, Salas PJ. Tumor necrosis factor alpha and inflammation disrupt the polarity complex in intestinal epithelial cells by a posttranslational mechanism. Mol Cell Biol. 2011;31:756–65.

    Article  CAS  PubMed  Google Scholar 

  30. Etienne-Manneville S, Hall A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol. 2003;15:67–72.

    Article  CAS  PubMed  Google Scholar 

  31. Gao L, Joberty G, Macara IG. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr Biol. 2002;12:221–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mizuno K, Suzuki A, Hirose T, Kitamura K, Kutsuzawa K, Futaki M, et al. Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J Biol Chem. 2003;278:31240–50.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol. 2001;152:1183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Georgiou M, Marinari E, Burden J, Baum B. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr Biol. 2008;18:1631–8.

    Article  CAS  PubMed  Google Scholar 

  35. Itoh N, Nakayama M, Nishimura T, Fujisue S, Nishioka T, Watanabe T, et al. Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3-kinase) as Par3 partners by proteomic analysis. Cytoskeleton. 2010;67:297–308.

    CAS  PubMed  Google Scholar 

  36. Elias BC, Das A, Parekh DV, Mernaugh G, Adams R, Yang Z, et al. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J Cell Sci. 2015;128:4293–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh JL, Maitra S, et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical pins. Curr Biol. 2010;20:1809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pallesi-Pocachard E, Bazellieres E, Viallat-Lieutaud A, Delgrossi M-H, Barthelemy-Requin M, Le Bivic A, et al. Hook2, a microtubule-binding protein, interacts with Par6α and controls centrosome orientation during polarized cell migration. Sci Rep [Internet]. 2016 [cited 2020 Jul 15];6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021942/

  39. Forteza R, Wald FA, Mashukova A, Kozhekbaeva Z, Salas PJ. Par-complex aPKC and Par3 cross-talk with innate immunity NF-κB pathway in epithelial cells. Biol Open. 2013;2:1264–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Vreede G, Schoenfeld JD, Windler SL, Morrison H, Lu H, Bilder D. The Scribble module regulates retromer-dependent endocytic trafficking during epithelial polarization. Development. 2014;141:2796–802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Su W, Wong EWP, Mruk DD, Cheng CY. The Scribble/Lgl/Dlg polarity protein complex is a regulator of blood-testis barrier dynamics and spermatid polarity during spermatogenesis. Endocrinology. 2012;153:6041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharifkhodaei Z, Gilbert MM, Auld VJ. Scribble and discs large mediate tricellular junction formation. Development [Internet]. Oxford University Press for The Company of Biologists Limited; 2019 [cited 2020 Jul 17];146. https://dev.biologists.org/content/146/18/dev174763

  43. Ivanov AI, Young C, Beste KD, Capaldo CT, Humbert PO, Brennwald P, et al. Tumor suppressor Scribble regulates assembly of tight junctions in the intestinal epithelium. Am J Pathol. 2010;176:134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stucke VM, Timmerman E, Vandekerckhove J, Gevaert K, Hall A. The MAGUK protein MPP7 binds to the polarity protein hDlg1 and facilitates epithelial tight junction formation. Mol Biol Cell. 2007;18:1744–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bilder D, Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature. 2000;403:676–80.

    Article  CAS  PubMed  Google Scholar 

  46. Yates LL, Schnatwinkel C, Hazelwood L, Chessum L, Paudyal A, Hilton H, et al. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung. Dev Biol. 2013;373:267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshihara K, Ikenouchi J, Izumi Y, Akashi M, Tsukita S, Furuse M. Phosphorylation state regulates the localization of Scribble at adherens junctions and its association with E-cadherin–catenin complexes. Exp Cell Res. 2011;317:413–22.

    Article  CAS  PubMed  Google Scholar 

  48. Awadia S, Huq F, Arnold TR, Goicoechea SM, Sun YJ, Hou T, et al. SGEF forms a complex with scribble and Dlg1 and regulates epithelial junctions and contractility. J Cell Biol. 2019;218:2699–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bonello TT, Choi W, Peifer M. Scribble and discs-large direct initial assembly and positioning of adherens junctions during the establishment of apical-basal polarity. Development [Internet]. Oxford University Press for The Company of Biologists Limited; 2019 [cited 2020 Jul 19];146. https://dev.biologists.org/content/146/22/dev180976

  50. Chalmers AD, Whitley P, Elsum I, Yates L, Humbert PO, Richardson HE. The Scribble–Dlg–Lgl polarity module in development and cancer: from flies to man. Essays Biochem. 2012;53:141–68.

    Article  Google Scholar 

  51. Beatty A, Morton D, Kemphues K. The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo. Development. 2010;137:3995–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi J, Troyanovsky RB, Indra I, Mitchell BJ, Troyanovsky SM. Scribble, Erbin, and Lano redundantly regulate epithelial polarity and apical adhesion complex. J Cell Biol. 2019;218:2277–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Assémat E, Bazellières E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D. Polarity complex proteins. Biochim Biophys Acta. 2008;1778:614–30.

    Article  PubMed  CAS  Google Scholar 

  54. Laprise P, Chailler P, Houde M, Beaulieu J-F, Boucher M-J, Rivard N. Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J Biol Chem. 2002;277:8226–34.

    Article  CAS  PubMed  Google Scholar 

  55. Hendrick J, Franz-Wachtel M, Moeller Y, Schmid S, Macek B, Olayioye MA. The polarity protein Scribble positions DLC3 at adherens junctions to regulate Rho signaling. J Cell Sci. 2016;129:3583–96.

    CAS  PubMed  Google Scholar 

  56. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE. Lgl, aPKC, and Crumbs Regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol. 2010;20:573–81.

    Article  CAS  PubMed  Google Scholar 

  57. Parsons LM, Grzeschik NA, Allott M, Richardson H. Lgl/aPKC and Crb regulate the Salvador/Warts/Hippo pathway. Fly. 2010;4:288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fernández BG, Gaspar P, Brás-Pereira C, Jezowska B, Rebelo SR, Janody F. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development. 2011;138:2337–46.

    Article  PubMed  CAS  Google Scholar 

  59. Dow LE, Humbert PO. Polarity Regulators and the Control of Epithelial Architecture, Cell Migration, and Tumorigenesis. International Review of Cytology [Internet]. Academic Press; 2007 [cited 2020 Jul 23]; 253–302. http://www.sciencedirect.com/science/article/pii/S0074769607620063

  60. Silvis MR, Kreger BT, Lien W-H, Klezovitch O, Rudakova GM, Camargo FD, et al. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal. 2011;4:ra33–ra33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Nagasaka K, Pim D, Massimi P, Thomas M, Tomaic V, Subbaiah VK, et al. The cell polarity regulator hScrib controls ERK activation through a KIM site-dependent interaction. Oncogene. 2010;29:5311–21.

    Article  CAS  PubMed  Google Scholar 

  62. Zeniou-Meyer M, Liu Y, Béglé A, Olanish M, Hanauer A, Becherer U, et al. The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proc Natl Acad Sci USA. 2008;105:8434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lécine P, Bellaiche Y, et al. Mammalian Scribble forms a tight complex with the βPIX exchange factor. Curr Biol. 2004;14:987–95.

    Article  CAS  PubMed  Google Scholar 

  64. Reischauer S, Levesque MP, Nüsslein-Volhard C, Sonawane M. Lgl2 executes its function as a tumor suppressor by regulating ErbB signaling in the zebrafish epidermis. PLoS Genet. 2009;5:e1000720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wilson NR, Olm-Shipman AJ, Acevedo DS, Palaniyandi K, Hall EG, Kosa E, et al. SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination. Sci Rep [Internet]. 2016 [cited 2020 Jul 28];6 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726231/

  66. Frese KK, Latorre IJ, Chung S-H, Caruana G, Bernstein A, Jones SN, et al. Oncogenic function for the Dlg1 mammalian homolog of the Drosophila discs-large tumor suppressor. EMBO J. 2006;25:1406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Willecke M, Toggweiler J, Basler K. Loss of PI3K blocks cell-cycle progression in a Drosophila tumor model. Oncogene. 2011;30:4067–74.

    Article  CAS  PubMed  Google Scholar 

  68. Li X, Yang H, Liu J, Schmidt MD, Gao T. Scribble-mediated membrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBO Rep. 2011;12:818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332:680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Romero G, von Zastrow M, Friedman PA. Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: Means, motif, and opportunity. Adv Pharmacol [Internet]. Elsevier; 2011 [cited 2020 Jul 23]. p. 279–314. https://linkinghub.elsevier.com/retrieve/pii/B9780123859525000038

  71. Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol. 2015;29:814–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takai Y, Ikeda W, Ogita H, Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol. 2008;24:309–42.

    Article  CAS  PubMed  Google Scholar 

  73. Yoshida T, Iwata T, Takai Y, Birchmeier W, Yamato M, Okano T. Afadin requirement for cytokine expressions in keratinocytes during chemically induced inflammation in mice. Genes Cells. 2014;19:842–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Perez White BE, Ventrella R, Kaplan N, Cable CJ, Thomas PM, Getsios S. EphA2 proteomics in human keratinocytes reveals a novel association with afadin and epidermal tight junctions. J Cell Sci. 2017;130:111–8.

    PubMed  PubMed Central  Google Scholar 

  75. Shenolikar S, Weinman EJ. NHERF: targeting and trafficking membrane proteins. Am J Physiol Renal Physiol. 2001;280:F389–95.

    Article  CAS  PubMed  Google Scholar 

  76. Voltz JW, Weinman EJ, Shenolikar S. Expanding the role of NHERF, a PDZ-domain containing protein adapter, to growth regulation. Oncogene. 2001;20:6309–14.

    Article  CAS  PubMed  Google Scholar 

  77. Georgescu M-M, Yell P, Mobley BC, Shang P, Georgescu T, Wang S-HJ, et al. NHERF1/EBP50 is an organizer of polarity structures and a diagnostic marker in ependymoma. Acta Neuropathol Commun. 2015;3:11.

  78. Mangia A, Saponaro C, Malfettone A, Bisceglie D, Bellizzi A, Asselti M, et al. Involvement of nuclear NHERF1 in colorectal cancer progression. Oncol Rep. 2012;28:889–94.

    Article  PubMed  Google Scholar 

  79. Oh Y-S, Heo K, Kim E-K, Jang J-H, Bae SS, Park JB, et al. Dynamic relocalization of NHERF1 mediates chemotactic migration of ovarian cancer cells toward lysophosphatidic acid stimulation. Exp Mol Med. 2017;49:e351–e351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Castellani S, Guerra L, Favia M, Di Gioia S, Casavola V, Conese M. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. Lab Invest. 2012;92:1527–40.

    Article  CAS  PubMed  Google Scholar 

  81. Acharya N, Penukonda S, Shcheglova T, Hagymasi AT, Basu S, Srivastava PK. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc Natl Acad Sci USA. 2017;114:5005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Almogi-Hazan O, Or R. Cannabis, the endocannabinoid system and immunity—the journey from the bedside to the bench and back. IJMS. 2020;21:4448.

    Article  CAS  PubMed Central  Google Scholar 

  83. Pandey R, Mousawy K, Nagarkatti M, Nagarkatti P. Endocannabinoids and immune regulation☆. Pharmacol Res. 2009;60:85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Howlett AC. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.

    Article  CAS  PubMed  Google Scholar 

  85. De Petrocellis L, Nabissi M, Santoni G, Ligresti A. Actions and regulation of ionotropic cannabinoid receptors. Adv Pharmacol. 2017;80:249–89.

    Article  PubMed  CAS  Google Scholar 

  86. Lauckner JE, Jensen JB, Chen H-Y, Lu H-C, Hille B, Mackie K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA. 2008;105:2699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson N-O, Leonova J, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McHugh D, Page J, Dunn E, Bradshaw HB. Δ(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br J Pharmacol. 2012;165:2414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee J-W, Huang BX, Kwon H, Rashid MA, Kharebava G, Desai A, et al. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat Commun. 2016;7:13123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brown AJ. Novel cannabinoid receptors. Br J Pharmacol. 2007;152:567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Di Marzo V. Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators. Life Sci. 1999;65:645–55.

    Article  PubMed  Google Scholar 

  92. Bisogno T, Melck D, De Petrocellis L, Di Marzo V. Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J Neurochem. 1999;72:2113–9.

    Article  CAS  PubMed  Google Scholar 

  93. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997;388:773–8.

    Article  CAS  PubMed  Google Scholar 

  94. Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993;46:791–6.

    Article  CAS  PubMed  Google Scholar 

  95. Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem. 1997;272:3315–23.

    Article  CAS  PubMed  Google Scholar 

  96. Maccarrone M, Bab I, Bíró T, Cabral GA, Dey SK, Di Marzo V, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci. 2015;36:277–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, Del Castillo MD, Abalo R. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful nutraceuticals? Int J Mol Sci. 2020;21.

  98. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–7.

    Article  CAS  PubMed  Google Scholar 

  99. Maurelli S, Bisogno T, De Petrocellis L, Di Luccia A, Marino G, Di Marzo V. Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma “anandamide amidohydrolase.” FEBS Lett. 1995;377:82–6.

    Article  CAS  PubMed  Google Scholar 

  100. Laezza C, Pagano C, Navarra G, Pastorino O, Proto MC, Fiore D, et al. The endocannabinoid system: A target for cancer treatment. Int J Mol Sci. 2020;21.

  101. Joshi N, Onaivi ES. Endocannabinoid system components: overview and tissue distribution. Adv Exp Med Biol. 2019;1162:1–12.

    Article  CAS  PubMed  Google Scholar 

  102. McAllister SD, Glass M. CB1 and CB2 receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids. 2002;66:161–71.

    Article  CAS  PubMed  Google Scholar 

  103. Patel KD, Davison JS, Pittman QJ, Sharkey KA. Cannabinoid CB(2) receptors in health and disease. Curr Med Chem. 2010;17:1393–410.

    Article  PubMed  Google Scholar 

  104. Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, et al. Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem. 2000;275:605–12.

    Article  CAS  PubMed  Google Scholar 

  105. Parolaro D, Massi P, Rubino T, Monti E. Endocannabinoids in the immune system and cancer. Prostaglandins Leukot Essent Fatty Acids. 2002;66:319–32.

    Article  CAS  PubMed  Google Scholar 

  106. Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, et al. Endocannabinoid system in the adult rat circumventricular areas: An immunohistochemical study. J Comp Neurol. 2010;518:3065–85.

    Article  PubMed  CAS  Google Scholar 

  107. Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol. 2015;97:1049–70.

    Article  CAS  PubMed  Google Scholar 

  108. Turcotte C, Archambault A, Dumais É, Martin C, Blanchet M, Bissonnette E, et al. Endocannabinoid hydrolysis inhibition unmasks that unsaturated fatty acids induce a robust biosynthesis of 2-arachidonoyl-glycerol and its congeners in human myeloid leukocytes. FASEB J. 2020;34:4253–65.

    Article  CAS  PubMed  Google Scholar 

  109. Angelina A, Pérez-Diego M, López-Abente J, Palomares O. The role of cannabinoids in allergic diseases. IAA. 2020;1–20.

  110. Cabral GA, Ferreira GA, Jamerson MJ. Endocannabinoids and the immune system in health and disease. Handb Exp Pharmacol. 2015;231:185–211.

    Article  CAS  PubMed  Google Scholar 

  111. Turcotte C, Blanchet M-R, Laviolette M, Flamand N. Impact of cannabis, cannabinoids, and endocannabinoids in the lungs. Front Pharmacol. 2016;7:317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hoggatt J, Pelus LM. Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia. 2010;24:1993–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Khuja I, Yekhtin Z, Or R, Almogi-Hazan O. Cannabinoids reduce inflammation but inhibit lymphocyte recovery in murine models of bone marrow transplantation. IJMS. 2019;20:668.

    Article  CAS  PubMed Central  Google Scholar 

  114. Robinson RH, Meissler JJ, Breslow-Deckman JM, Gaughan J, Adler MW, Eisenstein TK. Cannabinoids inhibit T-cells via cannabinoid receptor 2 in an in vitro assay for graft rejection, the mixed lymphocyte reaction. J Neuroimmune Pharmacol. 2013;8:1239–50.

    Article  PubMed  Google Scholar 

  115. Eisenstein T, Meissler J, Wilson Q, Gaughan J, Adler M. Anandamide and Δ9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. J Neuroimmunol. 2007;189:17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 2018;9:2574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Szabady RL, Louissaint C, Lubben A, Xie B, Reeksting S, Tuohy C, et al. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J Clin Investig. 2018;128:4044–56.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Karwad MA, Couch DG, Theophilidou E, Sarmad S, Barrett DA, Larvin M, et al. The role of CB1 in intestinal permeability and inflammation. FASEB J. 2017;31:3267–77.

    Article  CAS  PubMed  Google Scholar 

  119. Alhamoruni A, Wright K, Larvin M, O’Sullivan S. Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability: Cannabinoids and intestinal permeability. Br J Pharmacol. 2012;165:2598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Karwad MA, Couch DG, Wright KL, Tufarelli C, Larvin M, Lund J, et al. Endocannabinoids and endocannabinoid-like compounds modulate hypoxia-induced permeability in CaCo-2 cells via CB1, TRPV1, and PPARα. Biochem Pharmacol. 2019;168:465–72.

    Article  CAS  PubMed  Google Scholar 

  121. Karwad MA, Macpherson T, Wang B, Theophilidou E, Sarmad S, Barrett DA, et al. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα. FASEB J. 2017;31:469–81.

    Article  CAS  PubMed  Google Scholar 

  122. Zoppi S, Madrigal JL, Pérez-Nievas BG, Marín-Jiménez I, Caso JR, Alou L, et al. Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation. Am J Physiol Gastrointest Liver Physiol. 2012;302:G565–71.

    Article  CAS  PubMed  Google Scholar 

  123. Muccioli GG, Naslain D, Bäckhed F, Reigstad CS, Lambert DM, Delzenne NM, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010;6:392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Shang VCM, O’Sullivan SE, Kendall DA, Roberts RE. The endogenous cannabinoid anandamide increases human airway epithelial cell permeability through an arachidonic acid metabolite. Pharmacol Res. 2016;105:152–63.

    Article  CAS  PubMed  Google Scholar 

  125. Gu L, Wang G, Li R, Feng Y, Qian Y. Cranberry juice phytochemicals attenuated ethanol-induce epithelial barrier dysfunction on Caco-2 monolayers (P06–094–19). Curr Dev Nutr [Internet]. 2019 [cited 2020 Jul 23];3. https://academic.oup.com/cdn/article/3/Supplement_1/nzz031.P06-094-19/5517550

  126. Hossen I, Hua W, Ting L, Mehmood A, Jingyi S, Duoxia X, et al. Phytochemicals and inflammatory bowel disease: a review. Crit Rev Food Sci Nutr. 2020;60:1321–45.

    Article  CAS  PubMed  Google Scholar 

  127. Perisetti A. Role of cannabis in inflammatory bowel diseases. Ann Gastroenterol [Internet]. 2020 [cited 2020 Jul 23].http://www.annalsgastro.gr/files/journals/1/earlyview/2020/ev-02-2020-03-AG4866-0452.pdf

  128. Izzo AA, Sharkey KA. Cannabinoids and the gut: New developments and emerging concepts. Pharmacol Ther. 2010;126:21–38.

    Article  CAS  PubMed  Google Scholar 

  129. Alhamoruni A, Lee AC, Wright KL, Larvin M, O’Sullivan SE. Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. J Pharmacol Exp Ther. 2010;335:92–102.

    Article  CAS  PubMed  Google Scholar 

  130. Milian L, Mata M, Alcacer J, Oliver M, Sancho-Tello M, de Llano JJM, et al. Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro. PLoS ONE. 2020;15:e0228909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hohmann T, Feese K, Ghadban C, Dehghani F, Grabiec U. On the influence of cannabinoids on cell morphology and motility of glioblastoma cells. PLoS ONE. 2019;14:e0212037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by Dalhousie University Faculty of Medicine Bridge Funding. L.F.O. and A.M.T. were supported by Natural Sciences and Engineering Research Council of Canada undergraduate student research awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis J. Dupré.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Leary, L.F., Tomko, A.M. & Dupré, D.J. Polarity scaffolds signaling in epithelial cell permeability. Inflamm. Res. 70, 525–538 (2021). https://doi.org/10.1007/s00011-021-01454-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01454-1

Keywords

Navigation