Skip to main content
Log in

Effect of dielectric pocket for controlling ambipolar conduction in TFET and analysis of noise and temperature sensitivity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An n+ pocket-doped silicon on insulator (SOI) tunnel field effect transistor (TFET) along with a dielectric pocket (DP) at channel drain junction has been proposed and investigated in this article. The merged impact of both lateral and vertical tunneling due to n+ pocket in the gate–source overlap region enhances the ON current and provides steeper subthreshold swing (SS). The dielectric pocket at channel drain junction depletes the drain region at channel drain interface. Consequently, the minimum tunneling width at channel drain interface is enhanced to offer significant suppression of ambipolar conduction in a TFET. The proposed TFET structure offers a high ON/OFF current ratio of 1.57 × 1010 and considerably low SS of 8 mV/dec along with reduced ambipolar conduction up to a larger negative bias region. The impact of parametric variation of the proposed structure is studied and optimized accordingly. Noise characteristics of the proposed SOI TFET are investigated to realize the reliability issues of the device. Besides, the impact of elevated temperature on transfer characteristic and various RF parameters including transconductance (gm), total gate capacitance (Cgg), gate to drain capacitance (Cgd), cutoff frequency (ft), gain bandwidth product (GBP) and intrinsic delay (τ), respectively, have been investigated. The device performance has been upgraded by the rise in cutoff frequency and drop in intrinsic delay at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. S Sarangi, S Bhushan, A Santra, S Dubey, S Jit and P K Tiwari Superlattices Microstruct. 60 263 (2013)

    Article  ADS  Google Scholar 

  2. A Chaudhry and M J Kumar IEEE Trans. Device Mater. Reliab. 4 99 (2004)

    Article  Google Scholar 

  3. A M Ionescu and H Riel Nature 479 329 (2011)

    Article  ADS  Google Scholar 

  4. A C Seabaugh and Q Zhang Proc. IEEE 98 2095 (2010)

    Article  Google Scholar 

  5. W Y Choi, B G Park, J D Lee and T J K Liu IEEE Electron Device Letters 28 743 (2007)

    Article  ADS  Google Scholar 

  6. V Jaju and V Dalal EE 530 1 (2004)

    Google Scholar 

  7. X Zhang, D Connelly, H Takeuchi, M Hytha, R J Mears and T K Liu IEEE Trans. Electron Devices 64 329 (2017)

    Article  ADS  Google Scholar 

  8. U E Avci, D H Morris and I Young IEEE J. Electron Devices Soc 3 88 (2015)

    Article  Google Scholar 

  9. J Appenzeller et al IEEE Trans. Electron Devices 52 2568 (2005)

    Article  ADS  Google Scholar 

  10. Hraziia, A Vladimirescu, A Amara, and C Anghel, Solid State Electron 70 67 (2012)

    Article  ADS  Google Scholar 

  11. V Vijayvargiya and S K Vishvakarma IEEE Trans. Nano technol 13 974 (2014)

    Article  ADS  Google Scholar 

  12. K Boucart and A M Ionescu IEEE Trans. Electron Devices 54 1725 (2007)

    Article  ADS  Google Scholar 

  13. M RamSaketh and D B Abdi Superlattices Microstruct 82 430 (2015)

    Article  ADS  Google Scholar 

  14. D B Abdi and M Jagadesh Kumar Superlattices Microstruct 86 12 (2015)

    Google Scholar 

  15. K Vanlalawmpuia and B Bhowmick IEEE Transactions on Electron Devices 66 4439 (2019)

    Article  ADS  Google Scholar 

  16. R Goswami, B Bhowmick and S Baishya Superlattices Microstruct 86 342 (2015)

    Article  ADS  Google Scholar 

  17. W Y Choi and W Lee IEEE Trans. Electron Devices 57 2317 (2010)

    Article  ADS  Google Scholar 

  18. S Garg and S Saurabh Superlattices Microstruct 113 261 (2018)

    Article  ADS  Google Scholar 

  19. D B Abdi and M J Kumar IEEE J. Electron Devices Soc 2 187 (2014)

    Article  Google Scholar 

  20. J Madan and R Chaujar Superlattices Microstruct 102 17 (2017)

    Article  ADS  Google Scholar 

  21. S Ahish et al IEEE Trans. Electron Devices 63 288 (2016)

    Article  ADS  Google Scholar 

  22. M Verma, S Tirkey, S Yadav, D Sharma and D S Yadav IEEE Transactions on Electron Devices 64 3841 (2017)

    Article  ADS  Google Scholar 

  23. R Goswami, B Bhowmick and S Baishya Microelectron 53 16 (2016)

    Article  Google Scholar 

  24. P Anandan, A Nithya and N Mohankumar Microelectron. Reliab 54 2723 (2014)

    Article  Google Scholar 

  25. P Ghosh and B Bhowmick Indian J. Phys. 94 493 (2019)

    Article  ADS  Google Scholar 

  26. E Datta et al IEEE Transactions on Electron Devices 67 810 (2020)

    Article  ADS  Google Scholar 

  27. Sentaurus Device User, Synopsys p 2009 (2009)

  28. C K Pandey, D Das and S Chaudhury Micro & Nano Letters 14 86 (2018)

    Article  Google Scholar 

  29. R G Debnath, S Baishya, Proceedings of 2020 IEEE Calcutta Conference (CALCON) p117 (2020)

  30. R Das, B Bhowmick and S Baishya, Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01821-4

    Article  Google Scholar 

  31. A Biswas, S S Dan, C L Royer, W Grabinski and A M Ionescu Micro Electron Eng 98 334 (2012)

    Article  Google Scholar 

  32. C Li, Z R Yan, Y Q Zhuang, X L Zhao and J M Guo, Chinese Physics 27 (2018)

  33. E H Toh, G H Wang, G Samudra and Y C Yeo Appl. Phys. Lett 90 263 (2007)

    Google Scholar 

  34. A Mallik Chattopadhyay IEEE Transactions on Electron Devices 58 4250 (2011)

    Article  ADS  Google Scholar 

  35. C D Llorente, J P Colinge, S Martinie, S Cristoloveanu, J Wan, C LeRoyer, G Ghibaudo and M Vinet Solid State Electronics 159 26 (2019)

    Article  ADS  Google Scholar 

  36. K Ganapathi, S Salahuddin, IEEE Transactions on Electron Devices 32 (2011)

  37. P P Goswami and B Bhowmick Silicon 12 693 (2019)

    Article  Google Scholar 

  38. L Zhang, M Chan, Springer International Publishing Switzerland (2016)

  39. P Jhalani and M Pattanaik, International Journal of VLSI design & Communication Systems (VLSICS) 5 (2014)

  40. M S Adhikari, Y Singh, Superlattices and Microstructures (2016)

  41. M S Adhikari and Y Singh Electronics Letters 51 1203 (2015)

    Article  ADS  Google Scholar 

  42. K R Barman and S Baishya Applied Physics A 125 401 (2019)

    Article  Google Scholar 

  43. J P Nougier IEEE Trans. Electron Devices 41 2034 (1994)

    Article  ADS  Google Scholar 

  44. T Nirschl, P F Wang, W Hansch and D S Landsiedel Proc. Int. Symp. Circuits Syst. 2004 713 (2004)

    Google Scholar 

  45. R Narang, M Saxena, R S Gupta and M Gupta IEEE Transactions on Nanotechnology 12 951 (2013)

    Article  ADS  Google Scholar 

  46. Y P Vaishni Physics 34 149 (1967)

    Google Scholar 

  47. S Kumar, E Goel, K Singh, B Singh, M Kumar and S Jit IEEE Trans. Electron Dev 60 3291 (2016)

    Article  ADS  Google Scholar 

  48. P K Singh et al IEEE (2019)

  49. M S Adhikaria and Y Singh Superlattices and Microstructures 88 567 (2015)

    Article  ADS  Google Scholar 

  50. N D Chien, Chun-Hsing Shih, Hung-Jin Teng, Cong-Kha Pham, Journal of Physics 1034 (2018)

  51. Chien N D, Shih C-H, Chen Y-H and Thu N T 2016 Proc. Int. Conf. on Electronics, Information and Communication p 10 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debika Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Chakraborty, U. Effect of dielectric pocket for controlling ambipolar conduction in TFET and analysis of noise and temperature sensitivity. Indian J Phys 96, 795–809 (2022). https://doi.org/10.1007/s12648-021-02054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02054-9

Keywords

Navigation