Skip to main content
Log in

Magnetic dipole interaction with multipole magnetic field lines of neutron stars

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2021

This article has been updated

Abstract

Conservation of magnetic flux is associated with regions of the powerful magnetic fields (B ∽ 1013 G) near neutron stars' surface. The vector potential generated by moving electric charge Q is uniformly distributed within a Neutron star's surface (radius R). The evolution of the magnetic field of isolated neutron stars is studied and based on magnetic flux conservation; the multipolar magnetic fields for (l = 1; l = 2; l  = 3; l  = 4) have calculated. We developed the field line equations and simulated the magnetic field line geometry for the interaction between neutron stars’ dipole–multipolar magnetic fields using the MATLAB software program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. J Chadwick Proc. R. Soc. A 136 692 (1932)

    ADS  Google Scholar 

  2. W Baade and F Zwicky Proc. Natl. Acad. Sci. USA 20 254 (1934)

    Article  ADS  Google Scholar 

  3. W Baade and F Zwicky Proc. Natl. Acad. Sci. USA 20 259 (1934)

    Article  ADS  Google Scholar 

  4. J R Oppenheimer and G M Volkoff Phys. Rev. 55 374 (1939)

    Article  ADS  Google Scholar 

  5. A Hewish, S J Bell, J D H Pilkington, P F Scott and R A Collins Nature 217 709 (1968)

    Article  ADS  Google Scholar 

  6. S Bowyer, E T Byram, T A Chubb and H Friedman Science 146 912 (1964)

    Article  ADS  Google Scholar 

  7. E Asseo and D Khechinashvili Mon. Not. R. Astron. Soc. 334 743 (2002)

    Article  ADS  Google Scholar 

  8. L Woltjer Astrophys. J. 140 1309 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  9. L W Kebede Astrophys. Space Sci. 282 131 (2002)

    Article  ADS  Google Scholar 

  10. O M Ahmed Res. Rev. J. Pure Appl. Phys. 06 3 (2018)

    Article  Google Scholar 

  11. J D Jackson Wiley Classical Electrodynamics. (Wiley India: New Delhi) (2011)

    Google Scholar 

  12. L Kirkup Phys. Educ. 21 107 (1986)

    Article  ADS  Google Scholar 

  13. C G Gray et al Am. J. Phys. 77 9 807 (2009)

    Article  ADS  Google Scholar 

  14. S Weinberg Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. (New York: Wiley) (1972)

    Google Scholar 

  15. D M Willis and L R Young Geophys. J. R. Astr. Soc. 89 1011 (1987)

    Article  ADS  Google Scholar 

  16. K Ioka and M Sasaki Astrophys. J. 600 p296 (2004)

    Article  ADS  Google Scholar 

  17. S G Gregory et al Rep. Prog. Phys. 73 12 126901 (2010)

    Article  ADS  Google Scholar 

  18. D M Willis and A R Gardiner Geophys. J. R. Astr. Soc. 95 625 (1988)

    Article  Google Scholar 

  19. S G Gregory et al Mon. Not. R. Astron. Soc. 371 999 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habtamu Menberu Tedila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to retrospective open access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedila, H.M. Magnetic dipole interaction with multipole magnetic field lines of neutron stars. Indian J Phys 96, 689–695 (2022). https://doi.org/10.1007/s12648-021-02039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02039-8

Keywords

Navigation