Skip to main content
Log in

Chern–Simons extension of ESK theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The commonly-known Chern–Simons extension of Einstein gravitational theory is written in terms of a square-curvature term added to the linear-curvature Hilbert Lagrangian. In a recent paper, we constructed two Chern–Simons extensions according to whether they consisted of a square-curvature term added to the square-curvature Stelle Lagrangian or of one linear-curvature term added to the linear-curvature Hilbert Lagrangian (Fabbri in Gen Relativ Gravit 52:96, 2020). The former extension gives rise to the topological extension of the re-normalizable gravity, the latter extension gives rise to the topological extension of the least-order gravity. This last theory will be written here in its torsional completion. Then a consequence for cosmology and particle physics will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackiw, R., Pi, S.Y.: Chern–Simons modification of general relativity. Phys. Rev. D 68, 104012 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Stelle, K.S.: Classical gravity with higher derivatives. Gen. Relativ. Gravit. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  3. Stelle, K.S.: Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  4. Fabbri, L.: The most complete mass-dimension four topological gravity. Gen. Relativ. Gravit. 52, 96 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hehl, F.W., Von Der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  6. Shapiro, I.L.: Physical aspects of the space-time torsion. Phys. Rep. 357, 113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Hammond, R.T.: Torsion gravity. Rep. Prog. Phys. 65, 599 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Arcos, H.I., Pereira, J.G.: Torsion gravity: a reappraisal. Int. J. Mod. Phys. D 13, 2193 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Laemmerzahl, C., Macias, A.: On the dimensionality of space-time. J. Math. Phys. 34, 4540 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Audretsch, J., Lammerzahl, C.: Constructive axiomatic approach to space-time torsion. Class. Quant. Grav. 5, 1285 (1988)

    Article  ADS  Google Scholar 

  11. Fabbri, L.: On a completely antisymmetric Cartan torsion tensor. In: Annales de la Fondation de Broglie, Special Issue on Torsion (2007)

  12. Fabbri, L.: On the principle of equivalence. In: Contemporary fundamental physics. Dark Matter, Einstein and Hilbert (2012)

  13. Fabbri, L.: On the problem of unicity in Einstein–Sciama–Kibble theory. Ann. Fond. Broglie 33, 365 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Fabbri, L.: On the consistency of constraints in matter field theories. Int. J. Theor. Phys. 51, 954 (2012)

    Article  MathSciNet  Google Scholar 

  15. Fabbri, L.: Least-order torsion-gravity for fermion fields, and the nonlinear potentials in the standard models. Int. J. Geom. Meth. Mod. Phys. 11, 1450073 (2014)

    Article  MathSciNet  Google Scholar 

  16. Fabbri, L.: Singularity-free spinors in gravity with propagating torsion. Mod. Phys. Lett. A 32, 1750221 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Fabbri, L.: A geometrical assessment of spinorial energy conditions. Eur. Phys. J. Plus 132, 156 (2017)

    Article  Google Scholar 

  18. Fabbri, L.: On geometric relativistic foundations of matter field equations and plane wave solutions. Mod. Phys. Lett. A 27, 1250028 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Fabbri, L.: On a purely geometric approach to the Dirac matter field and its quantum properties. Int. J. Theor. Phys. 53, 1896 (2014)

    Article  Google Scholar 

  20. Lounesto, P.: Clifford Algebras and Spinors (2001)

  21. Cavalcanti, R.T.: Classification of singular spinor fields and other mass dimension one fermions. Int. J. Mod. Phys. D 23, 1444002 (2014)

    Article  ADS  Google Scholar 

  22. Hoff da Silva, J.M., Cavalcanti, R.T.: Revealing how different spinors can be: the Lounesto spinor classification. Mod. Phys. Lett. A 32, 1730032 (2017)

  23. Hoff da Silva, J.M., da Rocha, R.: Unfolding physics from the algebraic classification of spinor fields. Phys. Lett. B718, 1519 (2013)

  24. Abłamowicz, R., Gonçalves, I., da Rocha, R.: Bilinear covariants and spinor fields duality in quantum Clifford algebras. J. Math. Phys. 55, 103501 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rodrigues, W.A., da Rocha, R., Vaz, J.: Hidden consequence of active local Lorentz invariance. Int. J. Geom. Meth. Mod. Phys. 2, 305 (2005)

    Article  MathSciNet  Google Scholar 

  26. Hoff da Silva, J.M., da Rocha, R.: From dirac action to ELKO action. Int. J. Mod. Phys. A24, 3227 (2009)

  27. Rocha, R., Hoff da Silva, J.M.: ELKO, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration. Adv. Appl. Clifford Algebras 20, 847 (2010)

  28. Rocha, R., Fabbri, L., Hoff da Silva, J.M., Cavalcanti, R.T., Silva-Neto, J.A.: Flag-dipole spinor fields in ESK gravities. J. Math. Phys. 54, 102505 (2013)

  29. Fabbri, L.: A generally-relativistic gauge classification of the Dirac fields. Int. J. Geom. Meth. Mod. Phys. 13, 1650078 (2016)

    Article  MathSciNet  Google Scholar 

  30. Fabbri, L.: Covariant inertial forces for spinors. Eur. Phys. J. C 78, 783 (2018)

    Article  ADS  Google Scholar 

  31. Fabbri, L.: Torsion gravity for Dirac fields. Int. J. Geom. Meth. Mod. Phys. 14, 1750037 (2017)

    Article  MathSciNet  Google Scholar 

  32. Fabbri, L.: Polar solutions with tensorial connection of the spinor equation. Eur. Phys. J. C 79, 188 (2019)

    Article  ADS  Google Scholar 

  33. Fabbri, L.: General dynamics of spinors. Adv. Appl. Clifford Algebras 27, 2901 (2017)

    Article  MathSciNet  Google Scholar 

  34. Fabbri, L.: Spinors in Polar Form. arXiv:2003.10825

  35. Lattanzi, M., Mercuri, S.: A solution of the strong CP problem via the Peccei-Quinn mechanism through the Nieh-Yan modified gravity and cosmological implications. Phys. Rev. D 81, 125015 (2010)

    Article  ADS  Google Scholar 

  36. Castillo-Felisola, O., Corral, C., Kovalenko, S., Schmidt, I., Lyubovitskij, V.E.: Axions in gravity with torsion. Phys. Rev. D 91, 085017 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Fabbri, L.: Re-normalizable Chern–Simons extension of propagating torsion theory. Eur. Phys. J. Plus 135, 700 (2020)

    Article  Google Scholar 

  38. Fabbri, Luca: A discussion on the most general torsion-gravity with electrodynamics for Dirac spinor matter fields. Int. J. Geom. Meth. Mod. Phys. 12, 1550099 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fabbri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, L. Chern–Simons extension of ESK theory. Gen Relativ Gravit 53, 33 (2021). https://doi.org/10.1007/s10714-021-02805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02805-3

Keywords

Navigation