Skip to main content
Log in

Dynamic Modeling of Heated Oscillatory Layer of Non-Newtonian Liquid

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

In this work, we have effectively used the numerical inversion of the Laplace transform to study the time-dependent thin heated film flow of a viscoelastic fluid flowing on an infinitely long flat substrate. Exact and analytical solutions are obtained in some limiting cases. The model describing this problem is a system of equations, coupling the linearized Navier–Stokes equation of the viscoelastic fluid with regard for gravity as an external force and the temperature relation for the energy profile. By assuming that the fluids are incompressible, we first derive a new system of equations, by taking into account additional terms, due to the insoluble surfactants and the viscoelastic properties. The velocity and temperature profiles are shown and the influence of coupling constant, viscoelastic parameters and the interfacial surfactants on the liquid film are discussed in detail. The validity of our solutions is verified by the numerical results to show the effects of different parameters involved and to show how the fluid flow evolves with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Weeks, W.T., Numerical inversion of Laplace transforms using Laguerre functions, Journal of the ACM, 1966, vol. 13, no. 3, pp. 419–429.

    Article  MathSciNet  Google Scholar 

  2. Hoog, F.R., Knight, J.H., and Stokes, A.N., An improved method for numerical inversion of Laplace transforms, SIAM Journal on Scientific and Statistical Computing, 1982, vol. 3, no. 3, pp. 357–366.

    Article  MathSciNet  Google Scholar 

  3. Valsa, J. and Brancik, L., Approximate formulae for numerical inversion of Laplace transforms, International Journal of Numerical Modelling, 1998, vol. 1, pp. 153–166.

    Article  Google Scholar 

  4. Jordan, P.M. and Puri, P., Exact solutions for the flow of a dipolar fluid on a suddenly accelerated flat plate, Acta Mechanica, 1999, vol. 137, pp. 183–194.

    Article  Google Scholar 

  5. Hayat, T., Khan, M., Ayub, M., and Siddiqui, A.M., The unsteady Couette flow of a second grade fluid in a layer of porous medium, Arch. Mech., 2005, vol. 57, no. 5, pp. 405–416.

    MathSciNet  MATH  Google Scholar 

  6. Muzychka, Y.S. and Yovanovich, M.M., Unsteady viscous flows and Stokes’s first problem, International Journal of Thermal Sciences, 2010, vol. 49, pp. 820–828.

    Article  Google Scholar 

  7. Sirwah, M.A., Sloshing waves in a heated viscoelastic fluid layer in an excited rectangular tank, Physics Letters A, 2014, vol. 378, pp. 3289–3300.

    Article  ADS  MathSciNet  Google Scholar 

  8. Ramkissoon, H., Ramdath, G., Comissiong, D., and Rahaman, K., On thermal instabilities in a viscoelastic fluid, International Journal of Non-Linear Mechanics, 2006, vol. 41, pp. 18–25.

    Article  ADS  Google Scholar 

  9. Mukhopadhyay, A. and Haldar, S., Long-wave instabilities of viscoelastic fluid film flowing down an inclined plane with linear temperature variation, Z. Naturforsch, 2010, vol. 65a, pp. 618–632.

    Article  ADS  Google Scholar 

  10. Haitao, Q. and Mingyu, X., Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative, Applied Mathematical Modelling, 2009, vol. 33, pp. 4184–4191.

    Article  MathSciNet  Google Scholar 

  11. Khan, SM., Ali, H., and Qi, H., On accelerated flows of a viscoelastic fluid with the fractional Burgers’ model, Nonlinear Analysis: Real World Applications, 2009, vol. 10, pp. 2286–2296.

    Article  MathSciNet  Google Scholar 

  12. Pozrikidis, C., Effect of surfactants on film flow down a periodic wall, J. Fluid Mech., 2003, vol. 496, pp. 105–127.

    Article  ADS  MathSciNet  Google Scholar 

  13. Yiantsios, S.G. and Higgins, B.G., A mechanism of Marangoni instability in evaporating thin liquid films due to soluble surfactant, Physics of Fluids, 2010, vol. 22 (022102), pp. 1–12.

    Article  Google Scholar 

  14. Mikishev, A.B. and Nepomnyashchy, A.A., Long-wavelength Marangoni convection in a liquid layer with insoluble surfactant: Linear theory, Microgravity Sci. Technol., 2020, vol. 22, pp. 415–423.

    Article  ADS  Google Scholar 

  15. Imran, M.A., Riaz, M.B., Shah N.A., and Zafar, A.A., Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary, Results in Physics, 2018, vol. 8, pp. 1061–1067.

    Article  ADS  Google Scholar 

  16. Shah, N.A., Zafar, A A., and Fetecau, C., Free convection flows over a vertical plate that applies shear stress to a fractional viscous fluid, Alexandria Engineering Journal, 2018, vol. 57, pp. 2529–2540.

    Article  Google Scholar 

  17. Qi, H. and Jin, H., Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative, Nonlinear Analysis: Real World Applications, 2009, vol. 10, pp. 2700–2708.

    Article  MathSciNet  Google Scholar 

  18. Hayat, T., Imtiaz, M., and Alsaedi, A., Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet, Applied Mathematics and Mechanics (Engl. Ed.), 2016, vol. 37, no. 5, pp. 573–582.

  19. Zakaria, K., Sirwah, M., Alkharashi, S., A two–layer model for superposed electrified Maxwell fluids in presence of heat transfer, Commun. Theor. Phys., 2012, vol. 55, no. 6, pp. 1077–1094.

    Article  Google Scholar 

  20. Jordan, P.M. and Puri, P., Stokes’ first problem for a Rivlin–Ericksen fluid of second grade in a porous half-space, International Journal of Non-Linear Mechanics, 2003, vol. 38, pp. 1019–1025.

    Article  ADS  Google Scholar 

  21. Xue, C., Nie, J., and Tan, W., An exact solution of start-up flow for the fractional generalized Burgers’ fluid in a porous half-space, Nonlinear Analysis, 2008, vol. 69, pp. 2086–2094.

    Article  MathSciNet  Google Scholar 

  22. Ruyer-Quil, C. and Manneville, P., Modeling film flows down inclined planes, Eur. Phys. J. B, 1998, vol. 6, pp. 277–292.

    Article  ADS  Google Scholar 

  23. Ajadi, S.O., A note of the unsteady flow of dusty viscous fluid between two parallel plates, J. Appl. Math. & Computing, 2005, vol. 18, pp. 393–403.

    Article  MathSciNet  Google Scholar 

  24. Amatousse, N., Abderrahmane, H.A., and Mehidi, N., Traveling waves on a falling weakly viscoelastic fluid film, International Journal of Engineering Science, 2012, vol. 54, pp. 27–41.

    Article  MathSciNet  Google Scholar 

  25. Durbin, F., Numerical inversion of Laplace transforms: an effective improvement of Dubner and Abate’s method, Comput. J., 1973, vol. 17, pp. 371–376.

    Article  Google Scholar 

  26. Fan, S.C., Li, S.M., and Yu, G.Y., Dynamic fluid-structure interaction analysis using boundary finite element metho—finite element method, J. Appl. Mech., 2005, vol. 72, pp. 591–598.

    Article  ADS  Google Scholar 

  27. Honig, G. and Hirdes, U., A method for the numerical inversion of Laplace transforms, J. Comput. Appl. Math., 1984, vol. 10, pp. 113–132.

    Article  MathSciNet  Google Scholar 

  28. Su, Y.C. and Ma, C. C., Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods, Int. J. Solids Struct., 2012, vol. 49, pp. 1158–1176.

    Article  Google Scholar 

  29. Agarwal S. and Bhadauria, B.S., Flow patterns in linear state of Rayleigh–Bénard convection in a rotating nanofluid layer, Applied Nanoscience, 2014, vol. 4, no. 8, pp. 935–941.

    Article  ADS  Google Scholar 

  30. Allias, R., Nasir, M.A.S., and Kechil, S.A., Steady thermosolutocapillary instability in fluid layer with nondeformable free surface in the presence of insoluble surfactant and gravity, Appl. Math. Inf. Sci., 2017, vol. 11, no. 1, pp. 87–94.

    Article  Google Scholar 

  31. Alkharashi, S.A. and Alrashidi, A., Dynamical behavior of a porous liquid layer of an Oldroyd-B model flowing over an oscillatory heated substrate, Sadhana, 2020, vol. 45, no. 7, pp. 1–16.

    Article  MathSciNet  Google Scholar 

  32. Alkharashi, S.A., A model of two viscoelastic liquid films traveling down in an inclined electrified channel, Applied Mathematics and Computation, 2019, vol. 355, pp. 553–575.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Sirwah or S. A. Alkharashi.

APPENDIX

APPENDIX

The quantities \({{c}_{1}},{{c}_{2}},...,{{c}_{6}}\) given in Eqs. (2.24)(2.26) may be formulated as follows:

$${{c}_{1}} = \frac{{A\bar {U}(s)}}{{{{M}_{0}}}}((k{{M}_{2}} - \gamma {{M}_{4}}){{J}_{6}}{{\mathfrak{M}}_{0}} + {{M}_{6}}(\gamma {{J}_{4}}{{\mathfrak{M}}_{0}} - k{{J}_{2}}{{\mathfrak{M}}_{0}} + k{{N}_{e}}(k{{\mathfrak{M}}_{2}} - \gamma {{\mathfrak{M}}_{4}}))),$$
$${{M}_{0}} = A({{J}_{1}} - {{J}_{3}})((k{{M}_{2}} - \gamma {{M}_{4}}){{J}_{6}}{{\mathfrak{M}}_{0}} + {{M}_{6}}(\gamma {{J}_{4}}{{\mathfrak{M}}_{0}} - k{{J}_{2}}{{\mathfrak{M}}_{0}} + k{{N}_{e}}(k{{\mathfrak{M}}_{2}} - \gamma {{\mathfrak{M}}_{4}})))$$
$$ + \,\gamma {{J}_{4}}\left( {{{M}_{6}}\left( {A{{J}_{3}}{{\mathfrak{M}}_{0}} - A{{J}_{1}}{{\mathfrak{M}}_{0}} + k\left( {A{{N}_{e}}({{\mathfrak{M}}_{1}} - {{\mathfrak{M}}_{3}}) + {{A}_{1}}{{P}_{e}}{{J}_{5}}{{\mathfrak{M}}_{0}}\left( {{{\Lambda }_{K}} - \Lambda } \right)} \right)} \right)} \right.$$
$$\, + {{J}_{6}}{{\mathfrak{M}}_{0}}(A{{M}_{1}} - A{{M}_{3}} + k{{A}_{1}}{{P}_{e}}{{M}_{5}}(\Lambda - {{\Lambda }_{K}}))) + k{{J}_{2}}({{J}_{6}}{{\mathfrak{M}}_{0}}(A{{M}_{3}} - A{{M}_{1}}$$
$$\left. { + \,k{{A}_{1}}{{P}_{e}}{{M}_{5}}\left( {{{\Lambda }_{K}} - {{\Lambda }_{\gamma }}} \right)} \right) + {{M}_{6}}(A{{J}_{1}}{{\mathfrak{M}}_{0}} - A{{J}_{3}}{{\mathfrak{M}}_{0}} - k(A{{N}_{e}}({{\mathfrak{M}}_{1}} - {{\mathfrak{M}}_{3}})$$
$$\left. {\left. {\left. { + \,{{A}_{1}}{{P}_{e}}{{J}_{5}}{{\mathfrak{M}}_{0}}({{\Lambda }_{K}} - {{\Lambda }_{\gamma }})} \right)} \right)} \right),\quad A = ({{k}^{2}} - {{\delta }^{2}})({{\gamma }^{2}} - {{\delta }^{2}}),\quad {{A}_{1}} = - \frac{{{{B}_{i}}}}{{1 + {{B}_{i}}}},$$
$${{\Lambda }_{K}} = {{k}^{2}} - {{\delta }^{2}},\quad {{\Lambda }_{\gamma }} = {{\gamma }^{2}} - {{\delta }^{2}},$$
$${{J}_{1}} = \frac{1}{{2{{s}^{2}}{{C}_{a}}{{R}_{e}}}}({{k}^{4}}\cosh(\gamma ) - {{C}_{a}}({{k}^{2}}\cosh(\gamma ) + {{k}^{4}}\cosh(\gamma ){{A}_{1}}{{M}_{a}} - {{s}^{2}}\gamma \sinh(\gamma ){{R}_{e}}$$
$$\, - 3{{k}^{2}}s\gamma \sinh(\gamma )F\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right) + s{{\gamma }^{3}}\sinh(\gamma )F\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right))),$$
$${{J}_{2}} = \frac{1}{{2{{s}^{2}}{{C}_{a}}{{R}_{e}}}}({{k}^{4}}\sinh(\gamma ) - {{C}_{a}}({{k}^{2}}\sinh(\gamma ) + {{k}^{4}}\sinh(\gamma ){{A}_{1}}{{M}_{a}} - {{s}^{2}}\gamma \cosh(\gamma ){{R}_{e}}$$
$$ - \,3{{k}^{2}}s\gamma \cosh(\gamma )F\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right) + s{{\gamma }^{3}}\cosh(\gamma )F({{\lambda }_{1}},{{\lambda }_{2}},s))),$$
$${{J}_{3}} = \frac{{k({{k}^{3}}\cosh(k) + {{C}_{a}}({{s}^{2}}\sinh(k){{R}_{e}} + 2{{k}^{2}}s\sinh(k)F\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right) - k\cosh(k) - {{k}^{3}}\cosh(k){{A}_{1}}{{M}_{a}}))}}{{2{{s}^{2}}{{C}_{a}}{{R}_{e}}}},$$
$${{J}_{4}} = \frac{{k({{k}^{3}}\sinh(k) + {{C}_{a}}({{s}^{2}}\cosh(k){{R}_{e}} + 2{{k}^{2}}s\cosh(k)F\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right) - k\sinh(k) - {{k}^{3}}\sinh(k){{A}_{1}}{{M}_{a}}))}}{{2{{s}^{2}}{{C}_{a}}{{R}_{e}}}},$$
$${{J}_{1}} = \frac{{\cosh(\gamma )({{k}^{2}}{{A}_{1}}{{M}_{a}}(A + s{{P}_{e}}{{\Lambda }_{K}}) + sA({{k}^{2}} + {{\gamma }^{2}})F\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right))}}{{sA}},$$
$${{J}_{2}} = \frac{{\sinh(\gamma )({{k}^{2}}{{A}_{1}}{{M}_{a}}(A + s{{P}_{e}}{{\Lambda }_{K}}) + sA({{k}^{2}} + {{\gamma }^{2}})F\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right))}}{{sA}},$$
$${{J}_{3}} = \frac{{{{k}^{2}}\cosh(k)\left( {{{A}_{1}}{{M}_{a}}\left( {A + s{{P}_{e}}{{\Lambda }_{\gamma }}} \right) + 2sAF\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right)} \right)}}{{sA}},$$
$${{J}_{4}} = \frac{{{{k}^{2}}\sinh(k)\left( {{{A}_{1}}{{M}_{a}}\left( {A + s{{P}_{e}}{{\Lambda }_{\gamma }}} \right) + 2sAF\left( {{{\lambda }_{1}},{{\lambda }_{2}},s} \right)} \right)}}{{sA}},\quad {{J}_{5}} = k\cosh(\delta ){{M}_{a}},\quad {{J}_{6}} = k\sinh(\delta ){{M}_{a}},$$
$${{\mathfrak{M}}_{0}} = s + \frac{{{{k}^{2}}}}{{{{P}_{{{\text{es}}}}}}},\quad {{\mathfrak{M}}_{1}} = - k\gamma \sinh(\gamma ),\quad {{\mathfrak{M}}_{2}} = - k\gamma \cosh(\gamma ),\quad {{\mathfrak{M}}_{3}} = - {{k}^{2}}\sinh(k),\quad {{\mathfrak{M}}_{4}} = - {{k}^{2}}\cosh(k),$$
$${{M}_{1}} = \frac{{k{{A}_{1}}(\gamma \sinh(\gamma ) + \cosh(\gamma ){{B}_{i}}){{P}_{e}}{{\Lambda }_{K}}}}{A},\quad {{M}_{2}} = \frac{{k{{A}_{1}}(\gamma \cosh(\gamma ) + \sinh(\gamma ){{B}_{i}}){{P}_{e}}{{\Lambda }_{K}}}}{A},$$
$${{M}_{3}} = \frac{{k{{A}_{1}}(k\sinh(k) + \cosh(k){{B}_{i}}){{P}_{e}}{{\Lambda }_{\gamma }}}}{A},\quad {{M}_{4}} = \frac{{k{{A}_{1}}(k\cosh(k) + \sinh(k){{B}_{i}}){{P}_{e}}{{\Lambda }_{\gamma }}}}{A},$$
$${{M}_{5}} = \delta \sinh(\delta ) + \cosh(\delta ){{B}_{i}},\quad {{M}_{6}} = \delta \cosh(\delta ) + \sinh(\delta ){{B}_{i}},$$
$${{c}_{2}} = \frac{{ - k\bar {U}(s)}}{{{{M}_{0}}}}({{M}_{6}}\left( {A{{J}_{3}}{{\mathfrak{M}}_{0}} - A{{J}_{1}}{{\mathfrak{M}}_{0}} + k\left( {A{{N}_{e}}({{\mathfrak{M}}_{1}} - {{\mathfrak{M}}_{3}}) + {{A}_{1}}{{P}_{e}}{{J}_{5}}{{\mathfrak{M}}_{0}}\left( {{{\Lambda }_{K}} - {{\Lambda }_{\gamma }}} \right)} \right)} \right)$$
$$ + \;{{J}_{6}}{{\mathfrak{M}}_{0}}(A{{M}_{1}} - A{{M}_{3}} + k{{A}_{1}}{{P}_{e}}{{M}_{5}}({{\Lambda }_{\gamma }} - {{\Lambda }_{K}}))),$$
$${{c}_{3}} = - {{c}_{1}},\quad {{c}_{4}} = - (\gamma {\text{/}}k){{c}_{2}},$$
$${{c}_{5}} = \frac{{k{{A}_{1}}{{P}_{e}}\bar {U}(s)({{\Lambda }_{\gamma }} - {{\Lambda }_{K}})}}{{{{M}_{0}}}}((k{{M}_{2}} - \gamma {{M}_{4}}){{J}_{6}}{{\mathfrak{M}}_{0}} + {{M}_{6}}(\gamma {{J}_{4}}{{\mathfrak{M}}_{0}} - k{{J}_{2}}{{\mathfrak{M}}_{0}} + k{{N}_{e}}(k{{\mathfrak{M}}_{2}} - \gamma {{\mathfrak{M}}_{4}}))),$$
$${{c}_{6}} = \frac{{\bar {U}(s)}}{{{{M}_{0}}}}(k{{M}_{2}}\left( {A{{J}_{3}}{{\mathfrak{M}}_{0}} - A{{J}_{1}}{{\mathfrak{M}}_{0}} + k\left( {A{{N}_{e}}({{\mathfrak{M}}_{1}} - {{\mathfrak{M}}_{3}}) + {{A}_{1}}{{P}_{e}}{{J}_{5}}{{\mathfrak{M}}_{0}}\left( {{{\Lambda }_{K}} - {{\Lambda }_{\gamma }}} \right)} \right)} \right)$$
$$ + \;(\gamma {{J}_{4}}{{\mathfrak{M}}_{0}} - k{{J}_{2}}{{\mathfrak{M}}_{0}} + k{{N}_{e}}(k{{\mathfrak{M}}_{2}} - \gamma {{\mathfrak{M}}_{4}}))\left( {A{{M}_{3}} - A{{M}_{1}} + k{{A}_{1}}{{P}_{e}}{{M}_{5}}\left( {{{\Lambda }_{K}} - {{\Lambda }_{\gamma }}} \right)} \right)$$
$$ + \;\gamma {{M}_{4}}(A{{J}_{1}}{{\mathfrak{M}}_{0}} - A{{J}_{3}}{{\mathfrak{M}}_{0}} + k(A{{N}_{e}}({{\mathfrak{M}}_{3}} - {{\mathfrak{M}}_{1}}) + {{A}_{1}}{{P}_{e}}{{J}_{5}}{{\mathfrak{M}}_{0}}({{\Lambda }_{\gamma }} - {{\Lambda }_{K}})))).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirwah, M.A., Alkharashi, S.A. Dynamic Modeling of Heated Oscillatory Layer of Non-Newtonian Liquid. Fluid Dyn 56, 291–307 (2021). https://doi.org/10.1134/S0015462821020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821020099

Keywords:

Navigation