Skip to main content
Log in

Simulation of Fluid Flow through a Hydraulic Fracture of a Heterogeneous Fracture-Tough Reservoir in the Planar 3D Formulation

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

The planar quasi-three-dimensional model of propagation of a hydraulic fracture in the reservoir characterized by the heterogeneous fracture toughness is constructed to investigate the fluid flow and fracture evolution. In order to simulate the heterogeneous layered reservoir with various fracture toughnesses, three typical cases of the reservoir are considered, namely, the reservoir with zones of weakness, the homogeneous reservoir, and the reservoir with zones of increased strength. The results show that heterogeneous fracture toughness of the reservoir affects strongly the shape of fracture, the fluid flow, and the general fracture opening (width) as compared with the homogeneous reservoir in which the radial fracture growth is implemented. Moreover, the effect of the heterogeneous fracture toughness of the reservoir on the fracture growth is mainly noted in the earlier stage. After a certain instant of time, the fracture propagates in various directions at approximately identical velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Perkins, T.K. and Kern, L.R., Widths of hydraulic fractures, J. Petrol. Technol., 1961, vol. 13(9), pp. 937–949.

    Article  Google Scholar 

  2. Nordgren, R.P., Propagation of a vertical hydraulic fracture, Soc. Petro. Eng. J., 1972, vol. 12(4), pp. 306–314.

    Article  Google Scholar 

  3. Warpinski, N.R., Schimidt, R.A., and Northrop, D.A., In-situ stresses: the predominant influence on hydraulic fracture containment, J. Petrol. Technol., 1982, vol. 34(3), pp. 653–664.

    Article  Google Scholar 

  4. Nolte, K.G., Application of fracture design based on pressure analysis, SPE Prod. Eng., 1988, vol. 3(1), pp. 31–42.

    Article  ADS  Google Scholar 

  5. Advani, S.H. and Lee, J.K., Finite element model simulations associated with hydraulic fracturing, Soc. Petrol. Eng. J., 1982, vol. 22(2), pp. 209–218.

    Article  Google Scholar 

  6. Settari, A. and Cleary, M.P., Development and testing of a pseudo-three-dimensional model of hydraulic fracture geometry, SPE Prod. Eng., 1986, vol. 1(6), pp. 449–466.

    Article  Google Scholar 

  7. Adachi, J., Siebrits, E., Peirce, A., and Desroches, J., Computer simulation of hydraulic fractures, Intern. J. Rock Mec. Mining Sci., 2007, vol. 44, pp. 739–759.

    Article  Google Scholar 

  8. Gordeev, Yu.N., Self-similar solution of the problem of pseudo-three-dimensional vertical hydraulic fracture propagation in an impermeable stratum, Fluid Dynamics, 1995, vol. 30, no. 6, pp. 870–876. https://doi.org/10.1007/BF02078202

    Article  ADS  Google Scholar 

  9. Li, D., Zhang, S., and Zhang S., Experimental and numerical simulation study on fracturing through interlayer to coal seam, J. Natur. Gas Sci. Eng., 2014, vol. 21, pp. 386–396.

    Article  Google Scholar 

  10. Xiao, H.T. and Yue Z.Q. A three–dimensional displacement discontinuity method for crack problems in layered rocks, Intern. J. Rock Mec. Mining Sci., 2011, vol. 48, pp. 412–420.

    Article  Google Scholar 

  11. Wardie, L.J., Displacement discontinuity method for three-dimensional stress analysis of tabular excavations in non-homogeneous rock, in: The 25 th U. S. Symposium on Rock Mechanics (USRMS), 1984, June 25–27, Evanston, Illinois, pp. 702–709.

  12. Settari, A. and Cleary, M.P., Three-dimensional simulation of hydraulic fracturing. J. Petrol. Technol., 1984, vol. 36(7), pp. 1177–1190.

    Article  Google Scholar 

  13. Akulich, A.V. and Zvyagin, A.V., Interaction between hydraulic and natural fractures, Fluid Dynamics, 2008, vol. 43, no. 3, pp. 428–435. https://doi.org/10.1134/S0015462808030101

    Article  ADS  MATH  Google Scholar 

  14. Smirnov, N.N. and Tagirova, V.P., Self-similar solutions of the problem of formation of a hydraulic fracture in a porous medium, Fluid Dynamics, 2007, vol. 42, no. 1, pp. 60–70. https://doi.org/10.1134/S0015462807010073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Josh, M., Esteban, L., Piane, C.D., Sarout, J., Dewhurst, D.N., and Clennell, M.B., Laboratory characterisation of shale properties, J. Petrol. Sci. Eng., 2012, vols. 88–89, pp. 107–124.

    Article  Google Scholar 

  16. Siebrits, E. and Peirce, A.P, An efficient multi-layer planar 3D fracture growth algorithm using a fixed mesh approach, Intern. J. Num. Meth. Eng., 2002, vol. 53, pp. 691–717.

    Article  Google Scholar 

  17. Zia, H. and Lecampion, B., PyFrac: A planar 3D hydraulic fracture simulator, Comp. Phys. Comm., 2020, vol. 255, p. 107368.

    Article  MathSciNet  Google Scholar 

  18. Zia, H., Lecampion, B., and Zhang, W., Impact of the anisotropy of fracture toughness on the propagation of planar 3D hydraulic fracture, Int. J. Fract., 2018, vol. 211, pp. 103–123.

    Article  Google Scholar 

  19. Moukhtari, F.-E., Lecampion, B., and Zia, H., Planar hydraulic fracture growth perpendicular to the isotropy plane in a transversely isotropic material, J. Mec. Phys. Solids, 2020, vol. 137, p. 103878. https://doi.org/10.1016/j.jmps.2020.103878

    Article  ADS  MathSciNet  Google Scholar 

  20. Peirce, A. and Detournay, E., An implicit level set method for modelling hydraulically driven fractures, Comp. Meth. Appl. Mec. Eng., 2008, vol. 19, pp. 2858–2885.

    Article  Google Scholar 

  21. Spence, D.A. and Sharp, P., Self-similar solutions for elastohydrodynamic cavity flow, Proc. Math. Phys. Eng. Sci., 1985, vol. 400(18), pp. 289–313.

    MathSciNet  MATH  Google Scholar 

  22. Zhang, X., Detournay, E., and Jeffrey, R., Propagation of a penny-shaped hydraulic fracture parallel to the free-surface of an elastic half-space, Int. J. Fracture, 2002, vol. 115, pp. 125–158.

    Article  Google Scholar 

  23. Savitski, A.A. and Detournay, E., Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions, Int. J. Solid and Structures, 2002, vol. 39, pp. 6311–6337.

    Article  Google Scholar 

  24. Savitski, A.A. and Detournay, E., Similarity solution of a penny-shaped fluid-driven fracture in a zero-toughness linear elastic solid, Comptes Rendus de l’Académie des Sciences. Series IIB: Mechanics, 2001, vol. 329, pp. 255–262.

    Book  Google Scholar 

  25. Chen, X., Li, Y., Zhao, J., Xu, W., and Fu, D., Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells, J. Nat. Gas. Sci. Eng., 2018, vol. 51, pp. 44–52.

    Article  Google Scholar 

  26. Sesetty, V. and Ghassemi, A., A numerical study of sequential and simultaneous hydraulic fracturing in single and multi-lateral horizontal wells, J. Petrol. Sci. Eng., 2015, vol. 132, pp. 65–76.

    Article  Google Scholar 

  27. Xiao, H.T. and Yue, Z.Q., A three–dimensional displacement discontinuity method for crack problems in layered rocks, Int. J. Rock Mech. Mining Sci., 2011, vol. 48, pp. 412–420.

    Article  Google Scholar 

Download references

Funding

The authors wish to thank the support from the China Scholarship Council and the Program of Basic Research of the Russian Academy of Sciences (project no. АААА-А18-118041190145-1 (0065-2019-0021 and 0580-2021-0021)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Smirnov.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, A.B., Kay-Zhui, L., Smirnov, N.N. et al. Simulation of Fluid Flow through a Hydraulic Fracture of a Heterogeneous Fracture-Tough Reservoir in the Planar 3D Formulation. Fluid Dyn 56, 164–177 (2021). https://doi.org/10.1134/S0015462821020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821020051

Keywords:

Navigation