Skip to main content
Log in

Existence and Stability Analysis of Solution for Mathieu Fractional Differential Equations with Applications on Some Physical Phenomena

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper deals with a class of nonlinear Mathieu fractional differential equations. The reported results discuss the existence, uniqueness and stability for the solution of proposed equation. We prove the main results by the aid of fixed point theorems and Ulam’s approach. The paper is appended with two applications that describe the force of periodic pendulum and the motion of a particle in the plane. Graphical representations are used to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad WM, Sprott JC (2003) Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fract 16:339–51

    Article  Google Scholar 

  • Ali A, Shah K, Baleanu D (2019) Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations. Adv Differ Equ. https://doi.org/10.1186/s13662-018-1940-0

    Article  MathSciNet  MATH  Google Scholar 

  • Ali A, Shah K et al (2019) Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions. Adv Differ Equ 2019:7. https://doi.org/10.1186/s13662-018-1943-x

    Article  MathSciNet  MATH  Google Scholar 

  • Ali A, Shah K, Jarad F et al (2019) Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations. Adv Differ Equ 2019:101. https://doi.org/10.1186/s13662-019-2047-y

    Article  MathSciNet  MATH  Google Scholar 

  • Arshad A, Faranak R, Shah k, (2017) On Ulam’s type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions. J Nonlinear Sci Appl 10:4760–4775

    Article  MathSciNet  Google Scholar 

  • Atanackovic TM, Stankovic BB (2013) Linear fractional differential equation with variable coefficients I,. Bull de l’ Acad Serbe Sci Arts Cl Math 38:27–42

    MathSciNet  MATH  Google Scholar 

  • Atanackovic TM, Stankovic B (2014) Linear fractional differential equation with variable cofficients II. Bulletin T.CXLVI de l’Académie serbe des sciences et des arts, No, p 39

  • Ahmad B, Matar MM, EL-Salmy OM (2017) Existence of solutions and ulam stability for Caputo type sequential fractional differential equations of order \(\alpha \in (2,3)\). Int J Anal Appl 15(1):86–101

    MATH  Google Scholar 

  • Baleanu D, Machado JAT, Luo ACJ (2002) Fractional dynamics and control. Springer, New York

    Google Scholar 

  • Berhail A, Tabouche N, Matar MM, Alzabut J (2019) On nonlocal integral and derivative boundary value problem of nonlinear Hadamard Langevin equation with three different fractional orders. Soc Mat Mex Bol. https://doi.org/10.1007/s40590-019-00257-z

    Article  MATH  Google Scholar 

  • Berhail A, Tabouche N (2020) Existence and uniqueness of Solution for Hadamard fractional differential equations on an infinite interval with integral boundary value conditions. Applied Mathematics E-Notes 20:55–69

    MathSciNet  Google Scholar 

  • Berhail A, Tabouche N (2018) Existence of positive solutions of Hadamard fractional differential equations with integral boundary conditions. Soc Paran Mat Bol. https://doi.org/10.5269/bspm.44099

    Article  Google Scholar 

  • Campbell R (1950) Contribution á l’etude des solutions de l’equation de Mathieu associée. Bulletin de la S M F tome 78:185–218

    MATH  Google Scholar 

  • Cao J, Ma C, Xie H, Jiang Z.(2009): Nonlinear dynamics of duffing system with fractional order damping. In: DETC2009-86401, Proceedings of ASME IDETC/CIE 2009 conference, San Diego, CA, August 30-September 2

  • Chandrasekaran S, Kiran PA (2018) Ocean. Syst Eng 8(3):345–360

    Google Scholar 

  • Delbasco D, Rodino D (1996) Existence and uniqueness for a nonlinear fractional differential equation. J Math Anal Appl 204:609–625

    Article  MathSciNet  Google Scholar 

  • Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442

    Article  MathSciNet  Google Scholar 

  • Diethelm K, Ford NJ (2010) The analysis of fractional differential equations. Lecture notes in mathematics. Springer, Berlin

    Book  Google Scholar 

  • Dingle RB, Müller HJW (1964) The form of the coefficients of the late terms in asymptotic expansions of the characteristic numbers of Mathieu and Spheroidal-wave functions. J für die reine und angewandte Math 216:123–133

    MathSciNet  MATH  Google Scholar 

  • Ebaid A, ElSayed DMM, Aljoufi MD (2012) Fractional calculus model for damped Mathieu equation: approximate analytical solution. Appl Math Sci 6(82):4075–4080

    MathSciNet  MATH  Google Scholar 

  • El-Nabulsi RA (2012) Gravitons in fractional action cosmology. Int J Theor Phys 51(12):3978–3992

    Article  MathSciNet  Google Scholar 

  • El-Nabulsi RA (2011) The fractional white dwarf hydrodynamical nonlinear differential equation and emergence of quark stars. Appl Math Comp 218:2837–2849

    Article  MathSciNet  Google Scholar 

  • De Espíndola J, Bavastri C, De Oliveira Lopes E (2008) Design of optimum systems of viscoelastic vibration absorbers for a given material based on the fractional calculus model. J Vib Control 14(9–10):1607–1630

    MathSciNet  MATH  Google Scholar 

  • Ge ZM, Yi CX (2007) Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems. Chaos, Solitons and Fractals 32(1):42–61

    Article  Google Scholar 

  • Granas A, Dugundji J (2003) Fixed point theory. Springer, New York

    Book  Google Scholar 

  • Haba TC, Ablart G, Camps T, Olivie F (2005) Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon. Chaos, Solitons and Fractals 24(2):479–490

    Article  Google Scholar 

  • Heymans N (2008) Dynamic measurements in long-memory materials: fractional calculus evaluation of approach to steady state. J Vib Control 14(9–10):1587–1596

    Article  Google Scholar 

  • Ingman D, Suzdalnitsky J (2005) Application of differential operator with servo-order function in model of viscoelastic deformation process. J Eng Mech 131(7):763–767

    Article  Google Scholar 

  • Hyers DH (1941) On the stability of the linear functional equation. Proc Natl Acad Sci 27:222–224

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, North-Holland mathematics studies, 204. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Koo BJ, Kim MH, Randall RE (2004) Mathieu instability of a spar platform with mooring and risers. Ocean Eng 31:2175–2208

    Article  Google Scholar 

  • Lakshmikantham V, Leela S, Devi JV (2009) Theory of fractional dynamic systems. Cambridge Scientific Publishers, Cambridge

    MATH  Google Scholar 

  • Liao SW, Yeung RW (2001) In proceedings of the 16th international workshop on water waves and floating bodies. Hiroshima, Japan

    Google Scholar 

  • McLachlan NW (1951) Theory and application of Mathieu functions, Oxford University Press. Note: Reprinted lithographically in Great Britain at the University Press, Oxford, 1951 from corrected sheets of the (1947) first edition

  • Marathe A, Chatterjee A (2006) A symmetric Mathieu equations. Proc R Soc A 462:1643–1659. https://doi.org/10.1098/rspa.2005.1632

    Article  MATH  Google Scholar 

  • Mathieu E (1868) Mémoire sur Le mouvement vibratoire d’une membrane de forme elliptique. J de Mathématiques Pures et Appliquées 13:137–203

    MATH  Google Scholar 

  • Müller-Kirsten HJW, Dingle RB (1962) Asymptotic expansions of Mathieu functions and their characteristic numbers. J für die reine und angewandte Math. 211:11–32. https://doi.org/10.1515/crll.1962.211.11

    Article  MathSciNet  MATH  Google Scholar 

  • Müller-Kirsten HJW (2006) Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. World Scientific

  • Obloza M (1993) Hyers stability of the linear differential equation. Rocznik Nauk-Dydakt Prace Mat 13:259–270

    MathSciNet  MATH  Google Scholar 

  • Rassias ThM (1978) On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc 72:297–300. https://doi.org/10.2307/2042795

    Article  MathSciNet  MATH  Google Scholar 

  • Rand RH, Sah SM, Suchorsky MK (2010) Fractional Mathieu equation. Commun Nonlinear Sci Numer Simulat 15:3254–3262

    Article  Google Scholar 

  • Shah K, Arshad A, Bushnaq S (2018) Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math Meth Appl Sci. https://doi.org/10.1002/mma.5292

    Article  MathSciNet  MATH  Google Scholar 

  • Smart DR (1980) Fixed point theorems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tarasov VE (2011) Fractional dynamics: application of fractional calculus to dynamics of particles. Fields and media. Springer, New York

    Google Scholar 

  • Buren Van, Arnie L, Boisvert Jeffrey E (2007) Accurate calculation of the modified Mathieu functions of integer order. Quar Appl Math 65(1):1–23. https://doi.org/10.1090/S0033-569X-07-01039-5

    Article  MathSciNet  MATH  Google Scholar 

  • Wahl P, Chatterjee A (2004) Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn 38:3–22

    Article  MathSciNet  Google Scholar 

  • Wen S, Shen Y, Li X, Yang S, Xing H (2015) Dynamical analysis of fractional-order Mathieu equation. J Vib Eng 17(5):2696–2709

    Google Scholar 

  • Xie F, Lin X (2009) Asymptotic solution of the van der pol oscillator with small fractional damping. Phys Scripta 2009:014033

    Article  Google Scholar 

  • Yan RA, Sun SR, Han ZL (2016) Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales. Bull Iran Math Soc 42(2):247–262

    MathSciNet  MATH  Google Scholar 

  • Zhao Y, Sun S, Han Z, Li Q (2011) The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun Nonlinear Sci Num Simul 16(4):2086–2097

    Article  MathSciNet  Google Scholar 

  • Zubair M, Mughal MJ, Naqvi QA (2010) The wave equation and general plane wave solutions in fractional space. Prog Electromagnet Res Lett 19:137–146

    Article  Google Scholar 

Download references

Funding

J. Alzabut would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RGDES-2017-01-17.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally and significantly to this paper. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to J. Alzabut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabouche, N., Berhail, A., Matar, M.M. et al. Existence and Stability Analysis of Solution for Mathieu Fractional Differential Equations with Applications on Some Physical Phenomena. Iran J Sci Technol Trans Sci 45, 973–982 (2021). https://doi.org/10.1007/s40995-021-01076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-021-01076-6

Keywords

Mathematics Subject Classification

Navigation